
FFT cross-correlation, relation to convolution, and
extracting the Pearson correlation

A Hobbyist's Note on FFT for Cross-correlation and How it Compares to Pearson Correlation
Author: Gene Boo | Mar 2021 | Updated: Sep 2025

This note gives formal definitions, the FFT-based implementations, normalization conventions, and exact derivations
showing how to obtain the Pearson correlation coefficient from both time-domain and FFT-domain cross-
correlation. It is self-contained and A4-printable. New in this revision: a reproducible small‑N vs large‑N comparison
and an embedded SVG plot with adjustable dimensions that stays contained when printing.

Definitions and intuition

Discrete convolution

For sequences and (assume finite length or absolutely summable), the discrete
convolution is

Discrete cross-correlation

The discrete cross-correlation is the sliding dot-product without time-reversal:

If , is the autocorrelation. Cross-correlation measures similarity as one sequence is
shifted relative to the other; peaks locate aligning lags.

Relationship to convolution

Define the time-reversal . Then

So correlation is convolution with a flipped kernel.

Convolution theorem and FFT implementations

Convolution theorem

Let be the DFT and its inverse (matching the FFT/IFFT pair). Then

Correlation in the frequency domain

Using and the DFT property (bar = complex conjugation), we get

Thus, for linear cross-correlation computed via FFT:

Linear vs circular correlation and zero-padding

Linear correlation: length . Compute with FFT by zero-padding both
sequences to length (often next power of 2 for speed), then apply the
formula above and reorder to lags .

Circular correlation: length with wrap-around. Occurs if you do not pad to at least
. For most signal analysis, you want linear correlation.

Indexing note: For np.correlate(x, y, mode='full') with both length , the zero-lag value
sits at index . For the unshifted FFT correlation result (no centering), the zero-lag is at
index 0; if you "center" the sequence (e.g., via fftshift or a manual roll), zero-lag moves to the
center index.

Normalization and the Pearson correlation

Pearson correlation coefficient

For finite sequences , , define means and standard
deviations . The Pearson correlation coefficient is

This is the normalized zero-lag covariance (with convention). If you prefer the unbiased
covariance with , adjust accordingly; the ratio cancels if applied consistently.

Pearson as normalized zero-lag cross-correlation

Define zero-mean sequences , . The zero-lag linear cross-correlation is

Dividing by yields Pearson:

Therefore: Take either the time-domain correlation at zero lag (e.g., np.correlate with mean-
subtraction) or the FFT-based correlation at zero lag; normalize by to get the Pearson
coefficient. If you centered the correlation array, make sure you pick the correct zero-lag index.

Lag-dependent normalized cross-correlation

Sometimes you want a correlation function whose values lie in at each lag. The "biased"
normalization divides every lag by :

An alternative "unbiased" normalization uses in the denominator:

which corrects for the reducing overlap at larger lags but can be noisier.

Practical recipes and indexing details

Time-domain: NumPy correlate → Pearson (zero-lag)

import numpy as np

def pearson_from_np_correlate(x, y):
 x = np.asarray(x); y = np.asarray(y)
 assert x.shape == y.shape
 N = x.size
 xm = x - x.mean()
 ym = y - y.mean()
 cc_full = np.correlate(xm, ym, mode='full') # length 2N-1
 zero_lag = cc_full[N - 1] # zero-lag index
 return zero_lag / (N * xm.std(ddof=0) * ym.std(ddof=0))

FFT: linear cross-correlation → Pearson (zero-lag)

import numpy as np

def fft_cross_correlation_linear(x, y):
 x = np.asarray(x); y = np.asarray(y)
 N = x.size; M = y.size
 # zero-mean for covariance/correlation
 xm = x - x.mean()
 ym = y - y.mean()
 # choose L >= N + M - 1 (power of two for speed)
 L = 1
 while L < N + M - 1:
 L *= 2
 FX = np.fft.rfft(xm, n=L)
 FY = np.fft.rfft(ym, n=L)
 cc = np.fft.irfft(FX * np.conj(FY), n=L) # circular of length L
 # reorder into linear segment of length N+M-1 (lags: -(M-1)..(N-1))
 cc_linear = np.concatenate([cc[:N], cc[L - (M - 1):]])
 return cc_linear # unnormalized

def pearson_from_fft(x, y):
 x = np.asarray(x); y = np.asarray(y)
 assert x.shape == y.shape
 N = x.size
 cc_lin = fft_cross_correlation_linear(x, y) # length 2N-1
 zero_lag = cc_lin[N - 1]
 xm_std = (x - x.mean()).std(ddof=0)
 ym_std = (y - y.mean()).std(ddof=0)
 return zero_lag / (N * xm_std * ym_std)

Lag-normalized correlation curves (global normalization)

def normalized_cross_correlation_curves(x, y, unbiased=False):
 x = np.asarray(x); y = np.asarray(y)
 N = x.size
 xm = x - x.mean()
 ym = y - y.mean()
 cc = np.correlate(xm, ym, mode='full') # lags = -(N-1)..(N-1)
 denom_base = xm.std(ddof=0) * ym.std(ddof=0)
 if unbiased:
 lags = np.arange(-N+1, N)
 weights = (N - np.abs(lags))
 ncc = cc / (weights * denom_base)
 else:
 ncc = cc / (N * denom_base)
 return ncc

Small N versus large N behavior

At nonzero lags, “Pearson at lag k” uses local means and standard deviations on the overlapping
slice only, whereas a standard cross‑correlation curve (from np.correlate or FFT) typically uses
global means and stds with a fixed denominator (biased) or an overlap‑adjusted count
(unbiased). These two definitions coincide at lag 0; at other lags, they diverge—often sharply
when N is small.

Key point: For small N, local means/stds can differ dramatically from global ones, so Pearson-
per-lag can differ from “globally normalized” cross-correlation. As N grows, local means
converge to global means and the two curves agree (up to edge lags where the overlap is tiny).

Reproducible comparison (small N vs large N)

import numpy as np
from scipy.stats import pearsonr
from numpy.fft import rfft, irfft

def pearson_perlag(x, y):
 N = len(x)
 lags = np.arange(-N+1, N)
 out = np.full(2*N-1, np.nan)
 for i, k in enumerate(lags):
 if k > 0:
 a, b = x[k:], y[:-k]
 elif k < 0:
 a, b = x[:k], y[-k:]
 else:
 a, b = x, y
 if len(a) >= 2:
 out[i] = pearsonr(a, b)[0]
 return lags, out

def raw_cov_np(x, y):
 xm, ym = x - x.mean(), y - y.mean()
 return np.correlate(xm, ym, mode='full')

def raw_cov_fft(x, y):
 N = len(x)
 xm, ym = x - x.mean(), y - y.mean()
 L = 1 << (2*N - 1).bit_length()
 FX, FY = rfft(xm, n=L), rfft(ym, n=L)
 cc = irfft(FX * np.conj(FY), n=L).real
 return np.concatenate([cc[-(N-1):], cc[:N]])

def scale_to_pearson(x, y, raw_cov):
 N = len(x)
 lags = np.arange(-N+1, N)
 xs, xs2 = np.cumsum(x), np.cumsum(x**2)
 ys, ys2 = np.cumsum(y), np.cumsum(y**2)
 def slice_stats(cs, cs2, s, e):
 n = e - s
 if n <= 0: return np.nan, np.nan
 s1 = cs[e-1] - (cs[s-1] if s > 0 else 0.0)
 s2 = cs2[e-1] - (cs2[s-1] if s > 0 else 0.0)
 mu = s1 / n
 var = max(s2 / n - mu*mu, 0.0)
 return mu, np.sqrt(var)
 xmu, ymu = x.mean(), y.mean()
 out = np.full_like(raw_cov, np.nan, dtype=float)
 for i, k in enumerate(lags):
 if k > 0:
 a0, a1 = k, N; b0, b1 = 0, N-k
 elif k < 0:
 a0, a1 = 0, N+k; b0, b1 = -k, N

 else:
 a0, a1 = 0, N; b0, b1 = 0, N
 n = a1 - a0
 if n >= 2:
 mua, sda = slice_stats(xs, xs2, a0, a1)
 mub, sdb = slice_stats(ys, ys2, b0, b1)
 cov_local = raw_cov[i] - n * (mua - xmu) * (mub - ymu)
 out[i] = cov_local / (n * sda * sdb) if sda > 0 and sdb > 0 else np.nan
 return lags, out

def demo(N=20, seed=0, lags_check=(-5, 0, 5), mask_edges=True):
 rng = np.random.default_rng(seed)
 x = rng.standard_normal(N)
 y = rng.standard_normal(N)
 lags, pearson = pearson_perlag(x, y)
 cov_np = raw_cov_np(x, y)
 cov_fft = raw_cov_fft(x, y)
 _, ncc_np = scale_to_pearson(x, y, cov_np)
 _, ncc_fft = scale_to_pearson(x, y, cov_fft)
 print(f"N = {N}")
 for k in lags_check:
 idx = np.where(lags == k)[0][0]
 print(f" Lag {k:+d}: Pearson={pearson[idx]:+.6f} NP={ncc_np[idx]:+.6f} FFT={ncc_ff
 if mask_edges:
 overlap = N - np.abs(lags)
 m = overlap >= 2
 maxdiff_np = np.nanmax(np.abs(pearson[m] - ncc_np[m]))
 maxdiff_fft = np.nanmax(np.abs(pearson[m] - ncc_fft[m]))
 else:
 maxdiff_np = np.nanmax(np.abs(pearson - ncc_np))
 maxdiff_fft = np.nanmax(np.abs(pearson - ncc_fft))
 print(f" Max |diff| vs Pearson — NP: {maxdiff_np:.3e}, FFT: {maxdiff_fft:.3e}\\n")

Run both regimes
demo(N=20, seed=0)
demo(N=5000, seed=0)

Interpretation: You will see clear divergence at small N (except lag 0), and
near‑machine‑precision agreement at large N for all non‑edge lags. If you include edge lags
where the overlap is 1–2 points, differences inflate; mask those out when computing an overall
max‑difference metric.

Embedded plots: small N vs large N

The figure below overlays three curves — Pearson‑per‑lag (local stats), NumPy‑based Pearson
via per‑lag scaling, and FFT‑based Pearson via per‑lag scaling — for N = 20 and N = 5000.
Resize by editing data-width/data-height (screen) and data-max-mm (print).

-19 0 19
-1

-0.5

0.0

0.5

1

Lag

Co
rre

la
tio

n
Small N = 20 (edges masked in lines)

Pearson (local stats)
NumPy→Pearson (per-lag normalized)
FFT→Pearson (per-lag normalized)

-4999 0 4999
-1

-0.5

0.0

0.5

1

Lag

Co
rre

la
tio

n

Large N = 5000 (near machine-precision agreement)
Pearson (local stats)
NumPy→Pearson (per-lag normalized)
FFT→Pearson (per-lag normalized)

Small N vs Large N: Pearson per lag vs NumPy/FFT with local normalization

Sanity checks, edge cases, and best practices

Mean subtraction: If you want covariance/correlation, subtract means before correlating.
Otherwise you compute uncentered similarity dominated by DC components.

Scaling consistency: Decide on biased (divide by) or unbiased (divide by)
normalization. Pearson at zero-lag uses the convention shown above.

Finite length effects: Near extreme lags, fewer overlapping samples exist; unbiased
normalization compensates at the cost of higher variance. Pearson is undefined for overlap <
2.

Complex signals: For complex-valued sequences, correlation uses conjugation:
. The FFT form already includes conjugation.

Padding length: For FFT linear correlation, choose . A power-of-two
often speeds FFTs.

Index bookkeeping: Keep a consistent lag axis. For two length- vectors, lags are
, with zero-lag at index in full linear correlation arrays.

Minimal worked example

import numpy as np
from scipy.stats import pearsonr

np.random.seed(0)
N = 200
x = np.sin(2*np.pi*5*np.linspace(0,1,N)) + 0.2*np.random.randn(N)
y = np.roll(x, 17) + 0.2*np.random.randn(N)

Pearson from SciPy
r_scipy, _ = pearsonr(x, y)

Pearson from np.correlate (zero-lag normalized)
xm = x - x.mean(); ym = y - y.mean()
cc_full = np.correlate(xm, ym, mode='full')
r_np = cc_full[N-1] / (N * xm.std(ddof=0) * ym.std(ddof=0))

Pearson from FFT linear correlation (zero-lag normalized)
def fft_corr_lin_same(x, y):
 N = len(x)
 L = 1
 while L < 2*N - 1: L *= 2
 xm = x - x.mean(); ym = y - y.mean()
 FX = np.fft.rfft(xm, n=L)
 FY = np.fft.rfft(ym, n=L)
 cc = np.fft.irfft(FX * np.conj(FY), n=L)
 cc_lin = np.concatenate([cc[:N], cc[L-(N-1):]])
 return cc_lin

cc_lin = fft_corr_lin_same(x, y)
r_fft = cc_lin[N-1] / (N * xm.std(ddof=0) * ym.std(ddof=0))

print(f"SciPy pearsonr: {r_scipy:.6f}")
print(f"np.correlate r: {r_np:.6f}")
print(f"FFT corr r: {r_fft:.6f}")

All three lines will match to numerical precision. If they differ, check: (1) mean subtraction, (2)
zero-lag index, (3) normalization, and (4) linear vs circular treatment.

