FFT cross-correlation, relation to convolution, and
extracting the Pearson correlation

A Hobbyist's Note on FFT for Cross-correlation and How it Compares to Pearson Correlation
Author: Gene Boo | Mar 2021 | Updated: Sep 2025

This note gives formal definitions, the FFT-based implementations, normalization conventions, and exact derivations
showing how to obtain the Pearson correlation coefficient from both time-domain and FFT-domain cross-
correlation. It is self-contained and A4-printable. New in this revision: a reproducible small-N vs large-N comparison
and an embedded SVG plot with adjustable dimensions that stays contained when printing.

Definitions and intuition

Discrete convolution

For sequences f[n] and g[n] (assume finite length or absolutely summable), the discrete
convolution is

(Franl= > flmlgln—m]

m=—00

Discrete cross-correlation
The discrete cross-correlation is the sliding dot-product without time-reversal:
o0
Rglk] =) fln]gln+H]
Nn=—00

If f =g Rjysis the autocorrelation. Cross-correlation measures similarity as one sequence is
shifted relative to the other; peaks locate aligning lags.

Relationship to convolution

Define the time-reversal g[n| = g[—n]. Then

Ryglk] = (f * 9)[K]

So correlation is convolution with a flipped kernel.

Convolution theorem and FFT implementations

Convolution theorem

Let F be the DFT and F L its inverse (matching the FFT/IFFT pair). Then

F{f * g}[k] = F{f}K| - F{g}[K]

Correlation in the frequency domain

Using Ry, = f * § and the DFT property F{g} = F{g} (bar = complex conjugation), we get

F{Ryo}[k] = F{f}K| - F{g}[K]

Thus, for linear cross-correlation computed via FFT:
Rygln] = FHF{f}- F{g})Inl

Linear vs circular correlation and zero-padding

e Linear correlation: length N¢ 4+ N, — 1. Compute with FFT by zero-padding both
sequences to length L > Ny + Ny — 1 (often next power of 2 for speed), then apply the
formula above and reorder to lags [—(Ng — 1),...,0,...,(Nf — 1)].

e Circular correlation: length L with wrap-around. Occurs if you do not pad to at least
N; + Ny — 1. For most signal analysis, you want linear correlation.

Indexing note: For with both length N, the zero-lag value
sits at index N — 1. For the unshifted FFT correlation result (no centering), the zero-lag is at

index 0; if you "center" the sequence (e.g., via or a manual roll), zero-lag moves to the
center index.

Normalization and the Pearson correlation

Pearson correlation coefficient

For finite sequences = = (z1,...,ZN), ¥ = (Y1,..-,Yn), define means Z,y and standard
deviations o, 0y. The Pearson correlation coefficient is

Sz — 3) (v —)
No,oy

'rzy —

This is the normalized zero-lag covariance (with 1/N convention). If you prefer the unbiased
covariance with 1/(IN — 1), adjust accordingly; the ratio cancels if applied consistently.

Pearson as normalized zero-lag cross-correlation

Define zero-mean sequences &' = & — Z, ¢y = y — 9. The zero-lag linear cross-correlation is
N
_ /1
Roy (0] = E wz Y;
i=1

Dividing by No ;0 yields Pearson:
_ Rary [0]

Toy = —————
4 No,oy

Therefore: Take either the time-domain correlation at zero lag (e.g., with mean-
subtraction) or the FFT-based correlation at zero lag; normalize by Nozoy to get the Pearson
coefficient. If you centered the correlation array, make sure you pick the correct zero-lag index.

Lag-dependent normalized cross-correlation

Sometimes you want a correlation function whose values lie in [—1, 1] at each lag. The "biased"
normalization divides every lag by No oy

Rm’y’ [k]

Paylk] = Nowo,

An alternative "unbiased" normalization uses N — |k| in the denominator:

Ry (K]

Pl = N Tkl)orer,

which corrects for the reducing overlap at larger lags but can be noisier.

Practical recipes and indexing details

Time-domain: NumPy correlate — Pearson (zero-lag)
import numpy as np

def pearson_from_np_correlate(x, y):
np.asarray(x); y = np.asarray(y)

assert x.shape == y.shape
N = x.size

= X - x.mean()
ym =y - y.mean()
cc_full = np.correlate(xm, ym, mode="full') # length 2N-1
zero_lag = cc_full[N - 1] # zero-lag index
return zero_lag / (N * xm.std(ddof=0) * ym.std(ddof=0))

FFT: linear cross-correlation — Pearson (zero-lag)
import numpy as np

def fft_cross_correlation_linear(x, y):
np.asarray(x); y = np.asarray(y)
= X.size; M = y.size
zero-mean for covariance/correlation
= x - x.mean()
ym =y - y.mean()
choose L >= N + M - 1 (power of two for speed)
L=1
while L < N+ M - 1:
L *= 2
FX = np.fft.rfft(xm, n=L)
FY = np.fft.rfft(ym, n=L)
cc = np.fft.irfft(FX * np.conj(FY), n=L) # circular of length L
reorder into linear segment of length N+M-1 (lags: -(M-1)..(N-1))
cc_linear = np.concatenate([cc[:N], cc[L - (M - 1):]1])
return cc_linear # unnormalized

pearson_from_fft(x, y):
np.asarray(x); y = np.asarray(y)
assert x.shape == y.shape
N = x.size
cc_lin = fft_cross_correlation_linear(x, y) # length 2N-1
zero_lag = cc_lin[N - 1]
xm_std = (x - x.mean()).std(ddof=0)
ym_std = (y - y.mean()).std(ddof=0)
return zero_lag / (N * xm_std * ym_std)

Lag-normalized correlation curves (global normalization)

def normalized cross_correlation_curves(x, y, unbiased=False):

X = np.asarray(x); y = np.asarray(y)
N = x.size
= x - x.mean()
y - y.mean()
cc = np.correlate(xm, ym, mode='full') # lags = -(N-1)..(N-1)
denom_base = xm.std(ddof=0) * ym.std(ddof=0)
if unbiased:
lags = np.arange(-N+1, N)
weights = (N - np.abs(lags))
ncc = cc / (weights * denom_base)
else:
ncc = cc / (N * denom_base)
return ncc

Small N versus large N behavior

At nonzero lags, “"Pearson at lag k" uses local means and standard deviations on the overlapping
slice only, whereas a standard cross-correlation curve (from or FFT) typically uses
global means and stds with a fixed denominator (biased) or an overlap-adjusted count
(unbiased). These two definitions coincide at lag O; at other lags, they diverge—often sharply
when N is small.

Key point: For small N, local means/stds can differ dramatically from global ones, so Pearson-
per-lag can differ from ‘globally normalized” cross-correlation. As N grows, local means
converge to global means and the two curves agree (up to edge lags where the overlap is tiny).

Reproducible comparison (small N vs large N)

import numpy as np
from scipy.stats import pearsonr
from numpy.fft import rfft, irfft

def pearson_perlag(x, y):
= len(x)
lags = np.arange(-N+1, N)
out = np.full(2*N-1, np.nan)
for i, k in enumerate(lags):
if k > o:
a, b = x[k:], y[:-k]
elif k < 0:
a, b = x[:k], y[-k:]
else:
a, b=x,y
if len(a) >= 2:
out[i] = pearsonr(a, b)[0]
return lags, out

raw_cov_np(x, y):
xm, ym = x - x.mean(), y - y.mean()
return np.correlate(xm, ym, mode='full')

raw_cov_fft(x, y):
N = len(x)
xm, ym = x - x.mean(), y - y.mean()
=1 << (2*N - 1).bit_length()
FX, FY = rfft(xm, n=L), rfft(ym, n=L)
cc = irfft(FX * np.conj(FY), n=L).real
return np.concatenate([cc[-(N-1):], cc[:N]])

scale to_pearson(x, y, raw_cov):
= len(x)
lags = np.arange(-N+1, N)
XS, Xs2 = np.cumsum(X), np.cumsum(x**2)
ysS, ys2 = np.cumsum(y), np.cumsum(y**2)
def slice stats(cs, cs2, s, e):
n=e-s
if n <= @: return np.nan, np.nan
sl = cs[e-1] - (cs[s-1] if s > © else 0.0)
s2 = cs2[e-1] - (cs2[s-1] if s > © else 0.0)
mu =sl / n
var = max(s2 / n - mu*mu, 0.0)
return mu, np.sqrt(var)
xmu, ymu = x.mean(), y.mean()
out = np.full like(raw_cov, np.nan, dtype=float)
for i, k in enumerate(lags):
if k > o:
a0, al = k, N; bo, bl = 0, N-k
elif k < o:
a0, al = 0, N+k; b, bl = -k, N

else:
a0, al = 0, N; bo, bl = 0,
n=al - a0
if n >= 2:
mua, sda = slice stats(xs, xs2, a0, al)
mub, sdb = slice_stats(ys, ys2, be, bl)
cov_local = raw_cov[i] - n * (mua - xmu) * (mub - ymu)
out[i] = cov_local / (n * sda * sdb) if sda > @ and sdb > @ else np.nan

return lags, out

demo(N=20, seed=0, lags_check=(-5, @, 5), mask_edges=True):
rng = np.random.default_rng(seed)
x = rng.standard_normal(N)
y = rng.standard_normal(N)
lags, pearson = pearson_perlag(x, y)
cov_np = raw_cov_np(x, y)
cov_fft = raw_cov_fft(x, y)
_, hcc_np = scale_to_pearson(x, y, cov_np)
_, hcc_fft = scale_to_pearson(x, y, cov_fft)
print(f"N = {N}")
for k in lags_check:
idx = np.where(lags == k)[0][0]
print(f" Lag {k:+d}: Pearson={pearson[idx]:+.6f} NP={ncc_np[idx]:+.6f} FFT={ncc_f
if mask_edges:
overlap = N - np.abs(lags)
m = overlap >= 2
maxdiff np = np.nanmax(np.abs(pearson[m] - ncc_np[m]))
maxdiff fft = np.nanmax(np.abs(pearson[m] - ncc_fft[m]))
else:
maxdiff_np = np.nanmax(np.abs(pearson - ncc_np))
maxdiff fft = np.nanmax(np.abs(pearson - ncc_fft))
print(f" Max |diff| vs Pearson — NP: {maxdiff np:.3e}, FFT: {maxdiff_fft:.3e}\\n")

Run both regimes
demo(N=20, seed=0)
demo(N=5000, seed=0)

Interpretation: You will see clear divergence at small N (except lag 0), and
near-machine-precision agreement at large N for all non-edge lags. If you include edge lags
where the overlap is 1-2 points, differences inflate; mask those out when computing an overall
max-difference metric.

Embedded plots: small N vs large N

The figure below overlays three curves — Pearson-per-lag (local stats), NumPy-based Pearson
via per-lag scaling, and FFT-based Pearson via per-lag scaling — for N = 20 and N = 5000.
Resize by editing data-width/data-height (screen) and data-max-mm (print).

Small N = 20 (edges masked in lines)
Pearson (local stats)

- umPy—Pearson (per-lag normalized)

i
|
|
|
|
I
Y —_ - i A
05 FT—Pearson (per-lag\ normalized) \ A h |
A '\ / \! |
\] \
/\\ II N | \\ /I\ ll \ \ I
c 3 A I\ \ I/
\ 7] \ / \ | |
S NI VAR I/ A e \\) ! \ /A\ I/ \\ ll \ ! 7R II Lo
g 00 S R/ \7 7 AN = NI\ PN / ! AT
E \\ I v v/ \\ / v\ - \ / N / \ | ! | | I
) N \ \ - \ | RYAE
v ¥ Vg \ i [
\ \ \ I | |
1 I 1 |
-0.5 \ \ | [
\ \ | | I
\ ‘-—"\ 1 [
\! \ | |
\! P
-1 \\' | I
-19 0]
. b
! . .. tag i |l
Large N = 5000 (near machine-precision agreement) ',
— Pearson (local stats)
=== NumPy—Pearson (per-lag normalized)
054 == FFT—Pearson (per-lag normalized)
c
2
®
e
5
O

-1
—45?99 0 4999
I Lag

Small N vs Large N: Pearson per lag vs NumPy/FFT with local normalization

Sanity checks, edge cases, and best practices

e Mean subtraction: If you want covariance/correlation, subtract means before correlating.
Otherwise you compute uncentered similarity dominated by DC components.

e Scaling consistency: Decide on biased (divide by N) or unbiased (divide by N — |k|)
normalization. Pearson at zero-lag uses the N convention shown above.

¢ Finite length effects: Near extreme lags, fewer overlapping samples exist; unbiased

normalization compensates at the cost of higher variance. Pearson is undefined for overlap <
2.

e Complex signals: For complex-valued sequences, correlation uses conjugation:
R, k] = Y x[n]y[n + k|. The FFT form already includes conjugation.

¢ Padding length: For FFT linear correlation, choose L > Ny + Ny — 1. A power-of-two
often speeds FFTs.

¢ Index bookkeeping: Keep a consistent lag axis. For two length-N vectors, lags are
—(N—-1),...,0,...,(N — 1), with zero-lag at index N — 1 in full linear correlation arrays.

Minimal worked example

import numpy as np
from scipy.stats import pearsonr

np.random.seed(0)
= 200
np.sin(2*np.pi*5*np.linspace(0,1,N)) + 0.2*np.random.randn(N)
np.roll(x, 17) + 0.2*np.random.randn(N)

Pearson from SciPy
r_scipy, _ = pearsonr(x, y)

Pearson from np.correlate (zero-lag normalized)

Xxm = X - x.mean(); ym =y - y.mean()

cc_full = np.correlate(xm, ym, mode='full")

r_np = cc_full[N-1] / (N * xm.std(ddof=0) * ym.std(ddof=0))

Pearson from FFT linear correlation (zero-lag normalized)
def fft corr_lin_same(x, y):
= len(x)
=1
while L < 2*N - 1: L *= 2
Xm = X - x.mean(); ym =y - y.mean()
FX = np.fft.rfft(xm, n=L)
FY = np.fft.rfft(ym, n=L)
cc = np.fft.irfft(FX * np.conj(FY), n=L)
cc_lin = np.concatenate([cc[:N], cc[L-(N-1):1])
return cc_lin

cc_lin = fft_corr_lin_same(x, y)
r_fft = cc_1in[N-1] / (N * xm.std(ddof=0) * ym.std(ddof=0))

print(f"SciPy pearsonr: {r_scipy:.6f}")
print(f"np.correlate r: {r_np:.6f}")
print(f"FFT corr r: {r_fft:.6f}")

All three lines will match to numerical precision. If they differ, check: (1) mean subtraction, (2)
zero-lag index, (3) normalization, and (4) linear vs circular treatment.

