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This note gives formal definitions, the FFT-based implementations, normalization conventions, and exact derivations
showing how to obtain the Pearson correlation coefficient from both time-domain and FFT-domain cross-
correlation. It is self-contained and A4-printable. New in this revision: a reproducible small‑N vs large‑N comparison
and an embedded SVG plot with adjustable dimensions that stays contained when printing.

Definitions and intuition

Discrete convolution

For sequences  and  (assume finite length or absolutely summable), the discrete
convolution is

Discrete cross-correlation

The discrete cross-correlation is the sliding dot-product without time-reversal:

If ,  is the autocorrelation. Cross-correlation measures similarity as one sequence is
shifted relative to the other; peaks locate aligning lags.

Relationship to convolution

Define the time-reversal . Then

So correlation is convolution with a flipped kernel.



Convolution theorem and FFT implementations

Convolution theorem

Let  be the DFT and  its inverse (matching the FFT/IFFT pair). Then

Correlation in the frequency domain

Using  and the DFT property  (bar = complex conjugation), we get

Thus, for linear cross-correlation computed via FFT:

Linear vs circular correlation and zero-padding

Linear correlation: length . Compute with FFT by zero-padding both
sequences to length  (often next power of 2 for speed), then apply the
formula above and reorder to lags .

Circular correlation: length  with wrap-around. Occurs if you do not pad to at least
. For most signal analysis, you want linear correlation.

Indexing note: For np.correlate(x, y, mode='full')  with both length , the zero-lag value
sits at index . For the unshifted FFT correlation result (no centering), the zero-lag is at
index 0; if you "center" the sequence (e.g., via fftshift  or a manual roll), zero-lag moves to the
center index.

Normalization and the Pearson correlation

Pearson correlation coefficient

For finite sequences , , define means  and standard
deviations . The Pearson correlation coefficient is



This is the normalized zero-lag covariance (with  convention). If you prefer the unbiased
covariance with , adjust accordingly; the ratio cancels if applied consistently.

Pearson as normalized zero-lag cross-correlation

Define zero-mean sequences , . The zero-lag linear cross-correlation is

Dividing by  yields Pearson:

Therefore: Take either the time-domain correlation at zero lag (e.g., np.correlate  with mean-
subtraction) or the FFT-based correlation at zero lag; normalize by  to get the Pearson
coefficient. If you centered the correlation array, make sure you pick the correct zero-lag index.

Lag-dependent normalized cross-correlation

Sometimes you want a correlation function whose values lie in  at each lag. The "biased"
normalization divides every lag by :

An alternative "unbiased" normalization uses  in the denominator:

which corrects for the reducing overlap at larger lags but can be noisier.



Practical recipes and indexing details

Time-domain: NumPy correlate → Pearson (zero-lag)

import numpy as np

def pearson_from_np_correlate(x, y):
    x = np.asarray(x); y = np.asarray(y)
    assert x.shape == y.shape
    N = x.size
    xm = x - x.mean()
    ym = y - y.mean()
    cc_full = np.correlate(xm, ym, mode='full')  # length 2N-1
    zero_lag = cc_full[N - 1]                    # zero-lag index
    return zero_lag / (N * xm.std(ddof=0) * ym.std(ddof=0))

FFT: linear cross-correlation → Pearson (zero-lag)

import numpy as np

def fft_cross_correlation_linear(x, y):
    x = np.asarray(x); y = np.asarray(y)
    N = x.size; M = y.size
    # zero-mean for covariance/correlation
    xm = x - x.mean()
    ym = y - y.mean()
    # choose L >= N + M - 1 (power of two for speed)
    L = 1
    while L < N + M - 1:
        L *= 2
    FX = np.fft.rfft(xm, n=L)
    FY = np.fft.rfft(ym, n=L)
    cc = np.fft.irfft(FX * np.conj(FY), n=L)  # circular of length L
    # reorder into linear segment of length N+M-1 (lags: -(M-1)..(N-1))
    cc_linear = np.concatenate([cc[:N], cc[L - (M - 1):]])
    return cc_linear  # unnormalized

def pearson_from_fft(x, y):
    x = np.asarray(x); y = np.asarray(y)
    assert x.shape == y.shape
    N = x.size
    cc_lin = fft_cross_correlation_linear(x, y)  # length 2N-1
    zero_lag = cc_lin[N - 1]
    xm_std = (x - x.mean()).std(ddof=0)
    ym_std = (y - y.mean()).std(ddof=0)
    return zero_lag / (N * xm_std * ym_std)



Lag-normalized correlation curves (global normalization)

def normalized_cross_correlation_curves(x, y, unbiased=False):
    x = np.asarray(x); y = np.asarray(y)
    N = x.size
    xm = x - x.mean()
    ym = y - y.mean()
    cc = np.correlate(xm, ym, mode='full')  # lags = -(N-1)..(N-1)
    denom_base = xm.std(ddof=0) * ym.std(ddof=0)
    if unbiased:
        lags = np.arange(-N+1, N)
        weights = (N - np.abs(lags))
        ncc = cc / (weights * denom_base)
    else:
        ncc = cc / (N * denom_base)
    return ncc

Small N versus large N behavior

At nonzero lags, “Pearson at lag k” uses local means and standard deviations on the overlapping
slice only, whereas a standard cross‑correlation curve (from np.correlate  or FFT) typically uses
global means and stds with a fixed denominator (biased) or an overlap‑adjusted count
(unbiased). These two definitions coincide at lag 0; at other lags, they diverge—often sharply
when N is small.

Key point: For small N, local means/stds can differ dramatically from global ones, so Pearson-
per-lag can differ from “globally normalized” cross-correlation. As N grows, local means
converge to global means and the two curves agree (up to edge lags where the overlap is tiny).



Reproducible comparison (small N vs large N)

import numpy as np
from scipy.stats import pearsonr
from numpy.fft import rfft, irfft

def pearson_perlag(x, y):
    N = len(x)
    lags = np.arange(-N+1, N)
    out = np.full(2*N-1, np.nan)
    for i, k in enumerate(lags):
        if k > 0:
            a, b = x[k:], y[:-k]
        elif k < 0:
            a, b = x[:k], y[-k:]
        else:
            a, b = x, y
        if len(a) >= 2:
            out[i] = pearsonr(a, b)[0]
    return lags, out

def raw_cov_np(x, y):
    xm, ym = x - x.mean(), y - y.mean()
    return np.correlate(xm, ym, mode='full')

def raw_cov_fft(x, y):
    N = len(x)
    xm, ym = x - x.mean(), y - y.mean()
    L = 1 << (2*N - 1).bit_length()
    FX, FY = rfft(xm, n=L), rfft(ym, n=L)
    cc = irfft(FX * np.conj(FY), n=L).real
    return np.concatenate([cc[-(N-1):], cc[:N]])

def scale_to_pearson(x, y, raw_cov):
    N = len(x)
    lags = np.arange(-N+1, N)
    xs, xs2 = np.cumsum(x), np.cumsum(x**2)
    ys, ys2 = np.cumsum(y), np.cumsum(y**2)
    def slice_stats(cs, cs2, s, e):
        n = e - s
        if n <= 0: return np.nan, np.nan
        s1 = cs[e-1] - (cs[s-1] if s > 0 else 0.0)
        s2 = cs2[e-1] - (cs2[s-1] if s > 0 else 0.0)
        mu = s1 / n
        var = max(s2 / n - mu*mu, 0.0)
        return mu, np.sqrt(var)
    xmu, ymu = x.mean(), y.mean()
    out = np.full_like(raw_cov, np.nan, dtype=float)
    for i, k in enumerate(lags):
        if k > 0:
            a0, a1 = k, N; b0, b1 = 0, N-k
        elif k < 0:
            a0, a1 = 0, N+k; b0, b1 = -k, N



        else:
            a0, a1 = 0, N; b0, b1 = 0, N
        n = a1 - a0
        if n >= 2:
            mua, sda = slice_stats(xs, xs2, a0, a1)
            mub, sdb = slice_stats(ys, ys2, b0, b1)
            cov_local = raw_cov[i] - n * (mua - xmu) * (mub - ymu)
            out[i] = cov_local / (n * sda * sdb) if sda > 0 and sdb > 0 else np.nan
    return lags, out

def demo(N=20, seed=0, lags_check=(-5, 0, 5), mask_edges=True):
    rng = np.random.default_rng(seed)
    x = rng.standard_normal(N)
    y = rng.standard_normal(N)
    lags, pearson = pearson_perlag(x, y)
    cov_np = raw_cov_np(x, y)
    cov_fft = raw_cov_fft(x, y)
    _, ncc_np = scale_to_pearson(x, y, cov_np)
    _, ncc_fft = scale_to_pearson(x, y, cov_fft)
    print(f"N = {N}")
    for k in lags_check:
        idx = np.where(lags == k)[0][0]
        print(f" Lag {k:+d}: Pearson={pearson[idx]:+.6f}  NP={ncc_np[idx]:+.6f}  FFT={ncc_ff
    if mask_edges:
        overlap = N - np.abs(lags)
        m = overlap >= 2
        maxdiff_np = np.nanmax(np.abs(pearson[m] - ncc_np[m]))
        maxdiff_fft = np.nanmax(np.abs(pearson[m] - ncc_fft[m]))
    else:
        maxdiff_np = np.nanmax(np.abs(pearson - ncc_np))
        maxdiff_fft = np.nanmax(np.abs(pearson - ncc_fft))
    print(f" Max |diff| vs Pearson — NP: {maxdiff_np:.3e}, FFT: {maxdiff_fft:.3e}\\n")

# Run both regimes
demo(N=20, seed=0)
demo(N=5000, seed=0)

Interpretation: You will see clear divergence at small N (except lag 0), and
near‑machine‑precision agreement at large N for all non‑edge lags. If you include edge lags
where the overlap is 1–2 points, differences inflate; mask those out when computing an overall
max‑difference metric.

Embedded plots: small N vs large N

The figure below overlays three curves — Pearson‑per‑lag (local stats), NumPy‑based Pearson
via per‑lag scaling, and FFT‑based Pearson via per‑lag scaling — for N = 20 and N = 5000.
Resize by editing data-width/data-height (screen) and data-max-mm (print).
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Small N = 20 (edges masked in lines)

Pearson (local stats)
NumPy→Pearson (per-lag normalized)
FFT→Pearson (per-lag normalized)
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Large N = 5000 (near machine-precision agreement)
Pearson (local stats)
NumPy→Pearson (per-lag normalized)
FFT→Pearson (per-lag normalized)

Small N vs Large N: Pearson per lag vs NumPy/FFT with local normalization

Sanity checks, edge cases, and best practices

Mean subtraction: If you want covariance/correlation, subtract means before correlating.
Otherwise you compute uncentered similarity dominated by DC components.

Scaling consistency: Decide on biased (divide by ) or unbiased (divide by )
normalization. Pearson at zero-lag uses the  convention shown above.

Finite length effects: Near extreme lags, fewer overlapping samples exist; unbiased
normalization compensates at the cost of higher variance. Pearson is undefined for overlap <
2.

Complex signals: For complex-valued sequences, correlation uses conjugation:
. The FFT form already includes conjugation.

Padding length: For FFT linear correlation, choose . A power-of-two
often speeds FFTs.

Index bookkeeping: Keep a consistent lag axis. For two length-  vectors, lags are
, with zero-lag at index  in full linear correlation arrays.



Minimal worked example

import numpy as np
from scipy.stats import pearsonr

np.random.seed(0)
N = 200
x = np.sin(2*np.pi*5*np.linspace(0,1,N)) + 0.2*np.random.randn(N)
y = np.roll(x, 17) + 0.2*np.random.randn(N)

# Pearson from SciPy
r_scipy, _ = pearsonr(x, y)

# Pearson from np.correlate (zero-lag normalized)
xm = x - x.mean(); ym = y - y.mean()
cc_full = np.correlate(xm, ym, mode='full')
r_np = cc_full[N-1] / (N * xm.std(ddof=0) * ym.std(ddof=0))

# Pearson from FFT linear correlation (zero-lag normalized)
def fft_corr_lin_same(x, y):
    N = len(x)
    L = 1
    while L < 2*N - 1: L *= 2
    xm = x - x.mean(); ym = y - y.mean()
    FX = np.fft.rfft(xm, n=L)
    FY = np.fft.rfft(ym, n=L)
    cc = np.fft.irfft(FX * np.conj(FY), n=L)
    cc_lin = np.concatenate([cc[:N], cc[L-(N-1):]])
    return cc_lin

cc_lin = fft_corr_lin_same(x, y)
r_fft = cc_lin[N-1] / (N * xm.std(ddof=0) * ym.std(ddof=0))

print(f"SciPy pearsonr:   {r_scipy:.6f}")
print(f"np.correlate r:   {r_np:.6f}")
print(f"FFT corr r:       {r_fft:.6f}")

All three lines will match to numerical precision. If they differ, check: (1) mean subtraction, (2)
zero-lag index, (3) normalization, and (4) linear vs circular treatment.


