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Disclaimer: This article is intended as an educational guide aimed at other practitioners, hobbyist coders, and curious

students. The methods and interpretations presented herein are aimed with the sole purpose of documenting various

interesting quantitative methods as a personal archive and memorandum. While effort has been made to ensure

clarity, readers should consult formal sources for rigorous applications (please refer to the biblio at the end of this

document). The author is neither a mathematician nor a physicist nor computer scientist but merely a lowly risk

practitioner and an avid hobbyist fanboy of algorithms. If the reader wishes to implement any of the material given,

he/she is urged to verify and validate each step of the way.

Numerical integration, or quadrature, is a cornerstone of computational mathematics. It’s the art of approximating

definite integrals—those elegant expressions of accumulated change—using finite, well-chosen sums. In finance, especially

in the realm of option pricing, quadrature methods offer a compelling alternative to closed-form formulas (when they

exist) and Monte Carlo simulations (when brute force meets high dimensions). Quadrature is where mathematical

elegance meets computational pragmatism.

The term “quadrature” comes from the Latin quadratus, meaning “square.” Historically, it referred to the classical

geometric problem of squaring a figure—constructing a square with the same area as a given circle or other shape using

only a straightedge and compass. This was a central challenge in ancient Greek mathematics, famously leading to the

proof that exact squaring of the circle is impossible (since  is transcendental).

Extension to Integration Over time, the meaning of quadrature broadened to denote area computation in general.

Since integration in calculus is fundamentally about finding the area under a curve, the term “quadrature” became

synonymous with numerical integration:

where  and  are weights and nodes in a quadrature rule (e.g., Simpson’s rule, Gaussian quadrature).

Quadrature transforms integrals into weighted sums:
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Different rules pick nodes  and weights  to exploit smoothness, singularities,
symmetry, or infinite domains. The smarter the rule, the fewer points you need—and
the more accurate your result.

Think of quadrature as placing a few clever sensors across a landscape to estimate its total brightness. You don’t

need to measure every pixel—just the right ones. It’s like tasting a dish and knowing the recipe: strategic sampling
beats brute force. Below are some simple to complex integration problems that many practitioners use quadrature

for:

Rank Domain Integral Name / Description

1 Finance Risk‑neutral expectation for a

European call

2 Logistics Newsvendor expected cost

integral

3 Astrophysics Luminosity distance in FLRW

cosmology

4 Physics Fresnel cosine integral

5 Chemistry Two‑electron repulsion integral

(ERI)

6 Machine

Learning

Partition function of an

energy‑based model

7 Neural

Networks

Bayesian neural network

predictive distribution

But quadrature isn’t just a numerical trick—it’s a philosophy. It asks: “What do I know about this function? Where does it

change? Where does it hide its secrets?” And then it answers with precision, elegance, and sometimes, a bit of magic. Most

importantly, with well implemented classes or helper functions, it preserves the original outlook of the integral within the

code itself and this is the case for most computer languages (apart from say, assembly language).

In this guide, we’ll journey from the basics of integration to the cutting edge of financial modeling. We’ll explore trapezoids

and Chebyshev nodes, adaptive zoom-ins and Gaussian elegance. We’ll see how quadrature powers option pricing—from

Black-Scholes to Carr-Madan, from stop-loss premiums to strike-aware formulations. Whether you’re a curious teen, a

hobbyist coder, or a budding quant, this article is your launchpad into the world where math meets money.

Why it matters: Quadrature lets us solve problems that are too messy for formulas and too slow for brute force. It’s

the bridge between theory and practice, between elegance and efficiency.

Introduction

Fundamental Quadrature Methods
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Simpson's Rule

Romberg Integration

Advanced Quadrature Techniques

Gaussian Quadrature

Adaptive Quadrature

Clenshaw–Curtis and Tanh–Sinh Quadrature

Filon and Levin Quadrature for Oscillatory Integrals

Building Custom Quadrature Rules

Generalized Gaussian Quadrature (Golub–Welsch)

Generalized (Non‑Gaussian) Quadrature Creation

Modern Quadrature Architectures

Past infinity, past certainty — into the (purely conceptual) quantum fold of Quadrature

Option Pricing with Quadrature Methods

Black-Scholes Model

Gauss-Hermite for Option Pricing

Strike-Aware Formulation

Carr-Madan Quadrature Formulation

Stop-Loss Premium Formulation

Practical guidance and examples

Beyond Black-Scholes & Finance

Multidimensional Integrals

Integrals over a Circle and Arbitrary Shapes

Quadrature in the Wild: From Physics to Finance

Physics: The Path Integral

Chemistry: The Electronic Structure Problem

Biology: Pharmacokinetics

Maps & Geography: Geospatial Quadrature

DSP: Audio

Graphics: Rendering

Graphics: Quadrature for Animation and Quaternions

Video Games: Physics

Real‑Estate: Architecture

Shipbuilding: Naval

Navigation / Logistics

Remote Sensing: Crude Oil Detection

Crystal Science: Diffraction
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Lasers: Mode Overlap

Astrophysics

Finance: Local Volatility and Beyond

FFT: The Quadrature in Disguise

Chebyshev Nodes and Clenshaw-Curtis

FFT as a Quadrature Rule

Convolution: The Integral that FFT Loves

Quadrature for Convolution

Time is Money: Quadrature for Bermudan Options

The Dynamic Programming Equation

Quadrature Methods

FFT Acceleration

The Grand Reduction: Taming a High-Dimensional Integral

The Problem

Step 1: Change of Variables - Cholesky Decomposition

Step 2: Dimension Reduction via Conditioning

Step 3: PCA Reduction

Step 4: Numerical Integration

Step 5: Validation with Monte Carlo

Step 6: Compare Results

Conclusion

References & Further Reading

Trapezoid Rule

The simplest of them all, but wait - don't throw it out! It may not serve well
compared to other methods for direct integration, but it is most useful for
post-processing Fast Fourier Transform (FFT) results. We present to you the
trapezoid rule, which approximates integrals using linear interpolation to link the
nodes:

In the context of FFT-based methods, the trapezoid rule has a unique advantage: the

Fundamental Quadrature Methods
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FFT naturally produces function samples at equally spaced points over a periodic
domain. The trapezoid rule is exact for integrating any trigonometric polynomial
whose highest frequency is below the Nyquist limit — precisely the type of output
the FFT delivers. This means that for smooth, periodic functions reconstructed from
FFT coefficients, the trapezoid rule achieves spectral (exponentially fast)
convergence without the complexity of higher-order schemes.

Other quadrature rules, such as Simpson’s or Gaussian quadrature, require either
non-uniform nodes or additional function evaluations at midpoints, which are not
directly available from the FFT grid without interpolation. Interpolation would add
computational cost and potential aliasing errors, negating their theoretical
accuracy advantage. The trapezoid rule, by contrast, uses the FFT’s existing uniform
grid directly, making  to apply after an  transform, with no extra
sampling.

In short, when your data is periodic and uniformly sampled — as it is after an FFT —
the trapezoid rule is not just “good enough,” it is optimal in both accuracy and
efficiency.

# Composite Trapezoid Rule Pseudocode

function trapezoid(f, a, b, n):

h = (b - a) / n

sum = 0.5 * (f(a) + f(b))

for i from 1 to n-1:

x = a + i * h

sum += f(x)

return h * sum

Imagine measuring a curved shape by breaking it into many small trapezoids instead of rectangles. It's like using
slanted roof pieces instead of flat blocks to cover a curved surface - you get a better fit with the same number of

pieces!

Simpson's Rule

Simpson's rule uses quadratic interpolation for better accuracy:

It is a special case of the Newton–Cotes formulas, which approximate the integrand
by an -degree polynomial passing through  equally spaced points, then integrate
that polynomial exactly.

Beyond Quadratics: Higher-Degree Newton–Cotes Rules

O(N) O(N logN)
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By increasing the degree of the interpolating polynomial, we can create more
accurate rules (for smooth functions) without refining the grid:

Trapezoid Rule — degree 1 (linear interpolation)
Simpson's Rule — degree 2 (quadratic interpolation)
Simpson’s 3/8 Rule — degree 3 (cubic interpolation):

where .

Boole’s Rule — degree 4 (quartic interpolation):

where .

These higher-order rules can integrate polynomials of degree up to  exactly, but
they may suffer from Runge’s phenomenon and numerical instability if  is too large
over wide intervals. In practice, they are often applied in composite form —
breaking the domain into smaller subintervals and applying the low-degree rule
repeatedly.

Think of it like this: Simpson’s rule is like fitting a smooth arch between three points. If you add more points, you can
fit fancier curves — cubic, quartic, and beyond — which hug the function more closely. But if you try to fit too fancy a

curve over too wide a stretch, it can wiggle wildly between points. That’s why we often use these rules in small
chunks and piece them together. The concept sounds similar to splines, but in splines there are gradient constraints

between pieces in place to ensure smoothness.

Beyond Polynomials: Spline-Based Numerical & Analytical Hybrid Integration

Spline integration uses piecewise polynomial functions to approximate a function and
then integrates the spline instead of the original function. This approach gives
smoothness and numerical stability, especially when the function’s behavior varies
across intervals. It is a hybrid as the integration of spline curves can be done
analytically. The integral is computed by summing the area under each spline
segment:

where  is the spline polynomial on the -th interval. Runge’s Phenomenon: When
using high-degree polynomials over wide intervals, the interpolation may oscillate
wildly between points, especially near the edges. This leads to poor approximations
and instability. Spline methods mitigate this by using low-degree polynomials
locally.

Linear Spline Integration — piecewise degree 1 (equivalent to trapezoid rule):
On each interval  with ,
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The exact integral of this segment is the trapezoid rule:

Cubic Spline Integration — piecewise degree 3 with  continuity:
Let  denote the second derivative at node  (e.g., a natural spline uses

). On ,

Each  is a cubic polynomial, so  is obtained analytically by
integrating the above terms.
Hermite Spline Integration — piecewise cubic with derivative constraints (cubic
Hermite):
Using values  and slopes , with  on ,

This form is smooth and integrates exactly per segment by integrating the basis
polynomials .
PCHIP (Piecewise Cubic Hermite Interpolating Polynomial) — monotone, shape-
preserving cubic Hermite:
PCHIP is the Hermite spline above with slopes  chosen to preserve local
monotonicity and avoid overshoot. Let  and

For interior nodes ,

where  and . (End slopes use one-sided, shape-preserving
formulas.) Integration then follows the Hermite segment integral.
B-Spline Integration — basis-spline representation with local control:
Represent the fitted spline as

where  are B-spline basis functions of degree  defined by the Cox–de Boor
recursion with knot vector : \[ N_{j,0}(x)=\begin{cases}1,&t_j\le x

Mixed Splines — adaptively choose the spline per region:
Partition  into subregions . In smooth regions use a cubic spline for 
accuracy; near kinks, steps, or strongly monotone stretches use PCHIP to prevent
overshoot:
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enforcing at least  continuity (and optionally ) at region boundaries.

The composite spline integral is the sum of segment integrals:

Runge’s Phenomenon: High-degree single-interval polynomials may oscillate near the
edges, producing unstable approximations. Splines mitigate this by using low-degree
polynomials locally with continuity constraints.

Real-World Examples
Finance (Yield Curves): Integrate discount factors or forward rates. PCHIP is
often preferred to avoid spurious arbitrage (overshoots) in sparsely sampled
maturities.

Engineering (Stress–Strain Energy): Integrate smooth cubic splines of
experimental stress–strain data to compute specific energy absorption.

Robotics & Motion Planning: B-splines model trajectories; integrating speed
along a spline yields time/energy estimates with local control over segments.

Medical/Imaging: Integrate dose–response or intensity profiles reconstructed
with splines to get total dose/flux while preserving monotonic sections with
PCHIP.

Computer Graphics/CAD: B-splines (and NURBS) provide precise curve/surface
control; integrating along parameterized splines gives arc length or area.

# Spline-Based Numerical & Analytical Hybrid Integration

// Inputs: x[0./n], y[0./n]  (monotone x), method ∈ { "linear", "cubic", "pchip",
"bspline" }

// Optional params: bc, knots, degree, quad_points, region_selector (for "mixed")

function spline_integrate(x, y, method, params):

if method =/ "mixed":

regions = params.region_selector(x, y)   // e.g., segment by

smoothness/monotonicity

total = 0

for R in regions:                        // R = {idx_start, idx_end, methodR}

total += spline_integrate(x[R], y[R], methodR, params_for(methodR))

return total

// 1) Fit the chosen spline

if method =/ "linear":

S = fit_linear_spline(x, y)              // store per-interval slope d_i

else if method =/ "cubic":
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S = fit_cubic_spline(x, y, bc=params.bc) // solve tri-diagonal for second

derivs M_i

else if method =/ "pchip":

S = fit_pchip(x, y)                      // compute monotone slopes m_i

(Fritsch–Carlson)

else if method =/ "bspline":

(t, c, p) = bspline_fit(x, y, degree=params.degree, knots=params.knots)

// 2) Integrate

total = 0

if method in {"linear","cubic","pchip"}:

for i in 1./n:

a = x[i-1]; b = x[i]

// retrieve polynomial coefficients for S_i(x) on [a,b]

coeffs = local_polynomial(S, i)      // e.g., a0 + a1*(x-a) + a2*(x-a)^2

+ a3*(x-a)^3

total += poly_segment_integral(coeffs, a, b) // analytic antiderivative

return total

else if method =/ "bspline":

// integrate span-by-span on knot intervals where basis is low-degree and

sparse

for k in valid_knot_spans(t):

a = t[k]; b = t[k+1]

if b </ a: continue

// Quadrature (robust for arbitrary knots). p+3 Gauss points is usually

enough.

total += gauss_legendre(

f(x) = sum_j c[j]*B_spline_basis(j, p, x, t),

a, b, m = params.quad_points or (p + 3))

return total

Think of it like this: Instead of stretching one big curve over all your data (which can wiggle too much), spline
integration fits lots of small, smooth curves between pairs of points, but also ensures smoothness at the joints for

non-linear ones. Hermite splines even use the slope at each point to make the fit smarter. Then, you add up the area
under each little curve to get the total. It’s like laying flexible tiles over a bumpy surface — much more accurate and

stable than one big sheet!

Visual Comparison of Interpolation Methods

The diagram below shows how different interpolation methods behave. Notice how the high-degree polynomial (red)

oscillates near the edges — this is Runge’s phenomenon. Cubic and Hermite splines (blue and green) follow the true

function (dashed black but hidden by the splines) more smoothly.
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Interpolation Methods on Runge's Function

Romberg Integration

Romberg integration is a systematic way to refine trapezoidal rule estimates by
applying Richardson extrapolation — a technique that uses results at different step
sizes to cancel out leading error terms and accelerate convergence.

The trapezoidal rule has an error term proportional to  for smooth functions,
where  is the step size. If we compute the trapezoid estimate with  and with ,
we can combine them to eliminate the  term, leaving an error of order .

Romberg’s recursive scheme:

Here:
 = refinement level (more subintervals)
 = extrapolation level (higher-order correction)

 appears because halving  reduces the error term by a factor of  for even-
order methods

Two-Step Example

Suppose we want :
1. Compute  using 1 trapezoid ( ) → say 

2. Compute  using 2 trapezoids ( ) → say 
3. Apply Richardson extrapolation for :
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R(0, 0) h = 1 0.68394

R(1, 0) h = 0.5 0.73137

m = 1
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This is already much closer to the true value .

Three-Step Example

Continuing:
1. Compute  with 4 trapezoids ( ) → 

2. Extrapolate with :

3. Extrapolate again with  using  and :

Now we’re way more accurate after just 3 trapezoid refinements.

Analogy 1 – The Coastline Trick: Imagine measuring the length of a coastline with a big ruler — you miss all the little

bays and inlets. Then you measure again with a smaller ruler — you catch more detail, but still miss the tiniest

wiggles. If you know how the error shrinks when you halve the ruler size, you can combine the two measurements to
cancel most of the bias and get a much better estimate without going to an absurdly tiny ruler.

Analogy 2 – The Driving Speed Limit Sign: Suppose you’re driving toward a road sign with small text under the speed

limit. At 100m away you can sort of guess the letters, but they’re fuzzy. At 50m they’re clearer, but still not perfect. If
you notice how much clearer things get when halving the distance, you can predict what the sign says even before

you’re right next to it.

Gaussian Quadrature

Gaussian quadrature chooses both the nodes  and weights  so that the formula

is exact for all polynomials up to degree  (the maximum possible for  points).
The nodes are the roots of an orthogonal polynomial associated with a weight
function  on the interval , and the weights are derived from the

R(1, 1) = R(1, 0) +

R(1, 0) −R(0, 0)

4

1

− 1

R(1, 1) = 0.73137 +

0.73137 − 0.68394

3

≈ 0.74737

≈ 0.74682

R(2, 0) h = 0.25 0.74298

m = 1

R(2, 1) = 0.74298 +

0.74298 − 0.73137

3

≈ 0.74692

m = 2 R(2, 1) R(1, 1)

R(2, 2) = 0.74692 +

0.74692 − 0.74737

15

≈ 0.74689

Advanced Quadrature Techniques
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orthogonality conditions. This optimal placement means fewer points are needed for
the same accuracy compared to equally spaced rules.

Think of Gaussian quadrature as sending surveyors to the most informative spots in a landscape. Instead of spacing
them evenly, you place them exactly where they’ll capture the most detail about the terrain. The math behind it

guarantees that if your landscape is made of smooth hills (polynomials), you’ll measure it perfectly with surprisingly

few surveyors.

Gauss–Legendre

For general integrals on  with weight function :

where  are the roots of the Legendre polynomial . This is the most common
Gaussian quadrature and is easily rescaled to any finite interval .

Gauss–Hermite

For integrals with weight  on :

where  are the roots of the Hermite polynomial . This is ideal for problems
involving the normal distribution, such as option pricing under Black–Scholes.

Gauss–Laguerre

For integrals with weight  on :

where  are the roots of the Laguerre polynomial . Useful for exponential decay
problems, such as radioactive decay models or certain Laplace transforms, and it is
often used to integrate Lognormal problems - which we encounter a lot in GBM option
pricing.

Gauss Node–Weight Comparison (N=50)
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Laguerre [0, ∞) — weight e^{-x}

Hermite (−∞, ∞) — weight e^{-x²}

Legendre [−1, 1] — weight 1

Node position xᵢ (scaled per family)

Qu
ad

ra
tu

re
 Ty

pe

Gauss–Hermite (−∞,∞)
Gauss–Legendre [−1,1]
Gauss–Laguerre [0,∞)

Node positions by family (lanes) with marker size ∝ weight. (Illustrative; exact nodes/weights depend on N and scaling.)

Beyond Legendre, Hermite, Laguerre…

Gaussian quadrature is a family of rules, each tied to a specific orthogonal
polynomial and weight function:

Gauss–Chebyshev (first and second kind) — for weights  and  on
, excellent for trigonometric integrals.

Gauss–Jacobi — generalizes Legendre and Chebyshev with weight ,
.

Gauss–Gegenbauer — for ultraspherical weights .

Gauss–Radau — fixes one endpoint as a node; exact for degree .
Gauss–Lobatto — fixes both endpoints; exact for degree .

Gauss–Kronrod — extends an -point Gauss–Legendre rule to  points, nesting
the original nodes for adaptive error estimation.

Each variant is tuned to a specific weight function or integration constraint,
allowing you to exploit known structure in the integrand.

Think of these variants as different “dial settings” on the same precision instrument. If you know your function has

certain quirks — like it’s heavier near the edges, or it lives on an infinite domain — you pick the Gaussian rule that’s
already tuned for that shape. That way, you get more accuracy with fewer points, just by matching the tool to the job.

Gauss–Chebyshev

Gauss–Chebyshev quadrature is tailored for integrals with the weight function
 on :

The nodes are simply  and all weights are equal to . This rule is exact
for polynomials of degree up to  multiplied by the weight . It is especially
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efficient for integrals that can be transformed into this form, such as many
trigonometric integrals.

Think of Gauss–Chebyshev as a method that already “knows” your function lives on a circle. It places its measuring
points at equally spaced angles around that circle, which makes it perfect for problems involving sines, cosines, or

anything periodic in disguise.

Gauss–Jacobi

Gauss–Jacobi quadrature generalizes Gauss–Legendre and Gauss–Chebyshev by using the
weight function , with , on :

The nodes  are the roots of the Jacobi polynomial , and the weights  are
computed from orthogonality conditions. By tuning  and , you can emphasize
accuracy near one or both endpoints — useful for integrands with endpoint
singularities or sharp features.

Think of Gauss–Jacobi as a “custom‑fit” quadrature. If your function has tricky behavior near one or both ends of the
interval, you can tell Gauss–Jacobi to send more surveyors there. It’s like assigning extra inspectors to the weak

spots in a bridge.

Gauss–Lobatto

Gauss–Lobatto quadrature is a variant of Gaussian quadrature that includes both
endpoints of the interval  as nodes. It is exact for polynomials of degree up
to  (slightly less than Gauss–Legendre for the same ), but is valuable when
endpoint values are known or required:

The interior nodes are the roots of , the derivative of the Legendre
polynomial of degree . Gauss–Lobatto is popular in spectral methods and finite
element analysis, where boundary values play a key role.

Think of Gauss–Lobatto as a measuring crew that insists on checking the gates at both ends of a fence as well as the
posts in between. It’s perfect when you care about what’s happening right at the boundaries, not just in the middle.

Adaptive Quadrature

Adaptive methods allocate work where the integrand demands it. They compare a coarse
estimate on an interval with a refined estimate obtained by splitting the interval;
the difference acts as an error estimator. Subintervals whose error exceeds
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tolerance are split recursively until local targets are met, then results are
aggregated.

Simpson’s rule (1D):

The adaptive estimator uses

as a proxy for the local truncation error (with Richardson correction).

Gauss–Kronrod (GK 7–15): A 7-point Gauss rule is embedded in a 15-point Kronrod rule
on the same nodes plus extras. Let  be the Gauss estimate and  the Kronrod
estimate on a subinterval. An effective error indicator is

with robust variants that scale by norms of  to avoid under/over-estimation.
Subdivide where  exceeds a local tolerance.

# Adaptive Simpson (recursive, with Richardson correction and depth cap)

function asr(f, a, b, fa, fm, fb, S, tol, depth, max_depth):

c   = 0.5*(a + b)

m1  = 0.5*(a + c)

m2  = 0.5*(c + b)

fm1 = f(m1)

fm2 = f(m2)

Sl  = (c - a)/6 * (fa + 4*fm1 + fm)

Sr  = (b - c)/6 * (fm + 4*fm2 + fb)

S2  = Sl + Sr

err = |S2 - S|

if (err </ 15*tol) or (depth >/ max_depth):

# Richardson correction improves order to O(h^5)

return S2 + (S2 - S)/15

# Recurse on halves with halved tolerances

left  = asr(f, a, c, fa, fm1, fm, Sl, tol/2, depth+1, max_depth)

right = asr(f, c, b, fm, fm2, fb, Sr, tol/2, depth+1, max_depth)

return left + right

function adaptive_simpson(f, a, b, tol, max_depth=20):

fa = f(a); fb = f(b); fm = f(0.5*(a+b))

S  = (b - a)/6 * (fa + 4*fm + fb)

return asr(f, a, b, fa, fm, fb, S, tol, 0, max_depth)
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# Adaptive Gauss–Kronrod 15(7) (iterative, stack-based)

function gk15_eval(f, a, b):

# standard abscissae x_k in [0,1] (map to [-1,1] then to [a,b])

# and weights w_g (Gauss 7) and w_k (Kronrod 15)

# returns (I_K, I_G, err_indic, f_norm)

.//

return (IK, IG, |IK - IG|, norm_est)

function adaptive_gk(f, a, b, epsabs, epsrel, max_depth, limit_nodes):

stack = [(a, b, 0)]

total = 0

used_nodes = 0

while stack not empty:

(u, v, depth) = stack.pop()

(IK, IG, err, fnorm) = gk15_eval(f, u, v)

used_nodes += 15

tol_loc = max(epsabs, epsrel*abs(IK))

if (err </ tol_loc) or (depth >/ max_depth) or (used_nodes >/

limit_nodes):

total += IK

else:

m = 0.5*(u + v)

stack.push((m, v, depth+1))

stack.push((u, m, depth+1))

return total

Adaptive quadrature is a smart spotlight. It shines brighter (uses more points) where the function is complicated and

dims (saves points) where it’s smooth. Instead of wasting effort evenly, it pays attention and spends effort where it
matters.

Worked mini–examples

1) Endpoint singularity (integrable): 

Why adapt? Near ,  spikes. Adaptive methods place many subintervals near 0 and few near 1, achieving high

accuracy quickly.

2) Highly oscillatory: 

Why adapt? Oscillations demand more points where the wavelength is short. Adaptive splitting concentrates effort near

regions of rapid variation; elsewhere, larger panels suffice.

∫
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3) Localized spikes: 

Why adapt? Most contribution comes from . Adaptive schemes refine where  is large and coarsen in the tails.

Design details that matter

Tolerance policy: Use absolute/relative blend .

Depth & size caps: Set max_depth and minimum panel width to prevent infinite recursion on pathological .

Reuse evaluations: Cache and pass endpoint/midpoint values down the recursion to avoid recomputing .

Robustness: If NaN/Inf encountered, split aggressively or transform variables (e.g., endpoint maps for algebraic

singularities).

Performance: Prefer iterative stacks over deep recursion in Python to avoid overhead; vectorize batched point

evaluations where possible.

Python reference implementations

# Adaptive Simpson (robust, recursive with depth cap)

from __future__ import annotations

import math

from typing import Callable

def adaptive_simpson(f: Callable[[float], float],

 a: float, b: float,

 epsabs: float = 1e-10,

 epsrel: float = 1e-8,

 max_depth: int = 20) -> float:

"""Adaptive Simpson integration on [a,b]."""

def S(fa, fm, fb, a, b):

return (b - a) * (fa + 4*fm + fb) / 6.0

def recurse(a, b, fa, fm, fb, Sab, tol, depth):

c   = 0.5*(a + b)

m1  = 0.5*(a + c)

m2  = 0.5*(c + b)

fm1 = f(m1)

fm2 = f(m2)

Sl  = S(fa, fm1, fm, a, c)

Sr  = S(fm, fm2, fb, c, b)

S2  = Sl + Sr

err = abs(S2 - Sab)

if (err </ 15*tol) or (depth >/ max_depth):

# Richardson correction

return S2 + (S2 - Sab)/15.0

# Split tolerance

return (recurse(a, c, fa, fm1, fm, Sl, 0.5*tol, depth+1) +

recurse(c, b, fm, fm2, fb, Sr, 0.5*tol, depth+1))

fa = f(a); fb = f(b); fm = f(0.5*(a + b))

∫
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Sab = S(fa, fm, fb, a, b)

# Global tolerance target for the full interval

tol0 = max(epsabs, epsrel*abs(Sab))

return recurse(a, b, fa, fm, fb, Sab, tol0, 0)

# Adaptive Gauss–Kronrod 15(7) (iterative, QUADPACK-style)

from __future__ import annotations

import math

from typing import Callable, List, Tuple

# Kronrod 15 abscissae (nonnegative) and weights; Gauss-7 weights embedded

_xgk = [0.9914553711208126, 0.9491079123427585, 0.8648644233597691,

0.7415311855993945, 0.5860872354676911, 0.4058451513773972,

0.2077849550078985, 0.0]

_wg  = [0.1294849661688697, 0.2797053914892767,

0.3818300505051189, 0.4179591836734694]  # Gauss 7 (nonnegative)

_wk  = [0.02293532201052922, 0.06309209262997855, 0.10479001032225019,

0.14065325971552592, 0.16900472663926790, 0.19035057806478541,

0.20443294007529889, 0.20948214108472783]  # Kronrod 15 (nonnegative)

def _gk15_eval(f: Callable[[float], float], a: float, b: float) ->

Tuple[float,float,float,float]:

"""Evaluate GK15 on [a,b]. Return (IK, IG, err_est, fnorm)."""

c = 0.5*(a + b)

h = 0.5*(b - a)

# function values at positive nodes and symmetry

fk_sum = 0.0

fg_sum = 0.0

absf_sum = 0.0

# center

fc = f(c)

fk_sum += _wk[-1] * fc

absf_sum += _wk[-1] * abs(fc)

# loop over the 7 positive Kronrod abscissae

for j in range(7):

x = _xgk[j]

w_k = _wk[j]

xh = h * x

f1 = f(c - xh)

f2 = f(c + xh)

fk_sum += w_k * (f1 + f2)

absf_sum += w_k * (abs(f1) + abs(f2))

# Gauss nodes are a subset for j = 1,3,5,7 in xgk order:

# their indices in our loop correspond to 1,3,5,6 (because of 0-
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based)

# Gauss contribution (explicitly pick corresponding nodes)

gauss_idx = [1, 3, 5]  # indexes into _xgk (0-based) for Gauss positive nodes

for gi, wg in zip(gauss_idx, _wg[:-1]):

x = _xgk[gi]

xh = h * x

f1 = f(c - xh)

f2 = f(c + xh)

fg_sum += wg * (f1 + f2)

# Actually for Gauss-7, the center x=0 is a node with weight 0.417959.//,

covered by _wg[-1].

IK = h * fk_sum

IG = h * (_wg[-1]*fc + fg_sum - _wg[-1]*fc)  # fg_sum already accounts; keep

clarity

IG = h * (fg_sum + _wg[-1] * fc)

# Error indicator and a mild norm-based safeguard

err = abs(IK - IG)

fnorm = h * absf_sum

return IK, IG, err, fnorm

def quadgk(f: Callable[[float], float],

   a: float, b: float,

   epsabs: float = 1e-10,

   epsrel: float = 1e-8,

   max_depth: int = 20,

   limit: int = 10_000) -> float:

"""Adaptive Gauss–Kronrod 15(7) on [a,b]."""

# Work stack: (a, b, depth, last_IK, last_err) -/ IK,err cached optional

stack: List[Tuple[float,float,int]] = [(a, b, 0)]

total = 0.0

used = 0

while stack:

u, v, d = stack.pop()

IK, IG, err, fnorm = _gk15_eval(f, u, v)

used += 15

tol = max(epsabs, epsrel * abs(IK))

# Mild rescaling of err using norm (QUADPACK-like guard)

if fnorm > 0:

err = min(err, 200 * math.ulp(1.0) * fnorm + err)

if (err </ tol) or (d >/ max_depth) or (used >/ limit):

total += IK

else:

m = 0.5*(u + v)

stack.append((m, v, d+1))

stack.append((u, m, d+1))
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return total

Quick sanity checks

# 1) Endpoint singularity (integrable): ∫_0^1 x^{-1/2} dx = 2

f1 = lambda x: 1.0/math.sqrt(x) if x > 0 else 0.0

print(adaptive_simpson(f1, 0.0, 1.0, 1e-10, 1e-10))

print(quadgk(f1, 0.0, 1.0, 1e-10, 1e-10))

# 2) Oscillatory: ∫_0^1 sin(50x)/x dx  (well-defined as Si(50))

f2 = lambda x: math.sin(50*x)/x if x !/ 0 else 50.0

print(adaptive_simpson(f2, 0.0, 1.0, 1e-8, 1e-8))

print(quadgk(f2, 0.0, 1.0, 1e-8, 1e-8))

# 3) Gaussian bell: ∫_{-3}^{3} e^{-x^2} dx ≈ √π erf(3) ≈ 1.77241.//

f3 = lambda x: math.exp(-x*x)

print(adaptive_simpson(f3, -3.0, 3.0, 1e-12, 1e-10))

print(quadgk(f3, -3.0, 3.0, 1e-12, 1e-10))

Where each shines:

Adaptive Simpson: Excellent for smooth, low-cost integrands; very few points per panel; simple, accurate error

control.

Adaptive Gauss–Kronrod: More function calls per panel but higher-order accuracy and a robust embedded

error estimator; the go‑to general-purpose choice.

Adaptive quadrature is like a smart photographer who takes more pictures of the interesting parts of a scene and
fewer of the boring parts. It focuses computational effort where the function is most "active" or changing rapidly.

Clenshaw–Curtis and Tanh–Sinh Quadrature

Clenshaw–Curtis quadrature approximates

by interpolating  at Chebyshev–Lobatto nodes

These nodes cluster near , mitigating Runge’s phenomenon and capturing endpoint
behaviour efficiently. The interpolant is expressed as a cosine series via the
discrete cosine transform (DCT), and the integral is computed exactly for each

I = ∫
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f(x) dx

f(x)

x
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n

), k = 0, 1,… ,n.
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cosine term. The resulting weights  can be precomputed, and because the nodes are
nested (e.g., ), previously computed function values can be reused in adaptive
schemes.

The quadrature formula is:

where  are derived from the cosine coefficients  of the interpolant:

Integration term-by-term yields:

When to use: Smooth functions on finite intervals, especially when endpoint
behaviour matters or when you want to reuse samples for increasing . It is
competitive with Gauss–Legendre in accuracy but cheaper to implement with FFT-based
weight generation.

Tanh–Sinh quadrature (also called double-exponential or DE quadrature) excels for
integrals with endpoint singularities or infinite derivatives at the boundaries. It
maps  to  via:

which causes the integrand to decay double-exponentially as . The transformed
integral becomes:

The Jacobian factor

decays so rapidly that the trapezoidal rule in  converges at an astonishing rate —
often doubling the number of correct digits with each halving of the step size.

When to use: Integrals with algebraic or logarithmic endpoint singularities, or
functions analytic in a strip around the real axis. Also effective for Cauchy
principal value integrals after suitable symmetrisation.

Clenshaw–Curtis is like taking measurements at points that naturally “bunch up” near the edges of your interval,

where functions often misbehave. You then fit a smooth curve through those points using only cosines — which are
easy to integrate — and add up the contributions.

Tanh–Sinh is like stretching the ends of your interval to infinity in a clever way, so any nasty spikes at the edges get
squashed flat. Once flattened, you can march along with evenly spaced steps and still capture all the detail, because
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the transformation makes the function fade away super‑fast.

Why they are powerful

Clenshaw–Curtis:

Nodes are nested — reuse old function values when increasing resolution.

FFT/DCT‑based weight computation is  vs  for Gauss–Legendre.

Excellent for smooth functions; competitive accuracy with Gauss rules.

Tanh–Sinh:

Handles endpoint singularities without special‑case code.

Double‑exponential decay after transformation → extremely fast convergence.

Simple uniform‑step trapezoidal rule in transformed space.

Mini‑examples

Clenshaw–Curtis: 

Runge’s function has steep changes near the ends. Chebyshev nodes cluster there, capturing the shape efficiently.

Tanh–Sinh: 

Square‑root singularity at  is flattened by the DE transform, so the trapezoidal rule converges rapidly without

special handling.

import numpy as np

from math import pi

from scipy.fft import dct as _dct

def clenshaw_curtis(f, a: float, b: float, n: int = 128) -> float:

"""

Clenshaw–Curtis integration on [a,b] with n panels (n+1 Chebyshev–Lobatto nodes).

"""

if b =/ a:

return 0.0

# Chebyshev–Lobatto nodes on [-1,1]

k = np.arange(n + 1)

x_cheb = np.cos(pi * k / n)

# Map to [a,b]

xm = 0.5 * (b + a) + 0.5 * (b - a) * x_cheb

# Sample f

y = np.array([f(x) for x in xm], dtype=float)

# DCT-I (unnormalized) → Chebyshev coefficients

c = _dct(y, type=1, norm=None)

a_cheb = c / n

O(n logn) O(n

2

)

∫
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1+25x
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dx

∫

1

0

x

−1/2

dx

x = 0
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a_cheb[0] *= 0.5

a_cheb[-1] *= 0.5

# Integrate cosine series on [-1,1]:

# ∫ f ≈ 2*a_0 + sum_{even m>/2} 2*a_m/(1 - m^2)

I_hat = 2.0 * a_cheb[0]

if n >/ 2:

m_even = np.arange(2, n + 1, 2)

I_hat += np.sum(2.0 * a_cheb[m_even] / (1.0 - m_even*/2))

# Scale to [a,b]

return 0.5 * (b - a) * I_hat

def tanh_sinh(f, a: float, b: float, epsabs: float = 1e-12, epsrel: float = 1e-12,

  h0: float = 0.5, max_refinements: int = 12, max_terms: int =

10_000) -> float:

"""

Tanh–Sinh (double-exponential) quadrature on [a,b].

Handles endpoint singularities via x = (a+b)/2 + (b-a)/2 * tanh( (π/2) sinh t ).

"""

if b =/ a:

return 0.0

def phi(t):

u = 0.5 * pi * np.sinh(t)

return 0.5 * (a + b) + 0.5 * (b - a) * np.tanh(u)

def phi_prime(t):

u = 0.5 * pi * np.sinh(t)

return 0.5 * (b - a) * (0.5 * pi * np.cosh(t)) / (np.cosh(u) */ 2)

def g(t):

x = phi(t)

return f(x) * phi_prime(t)

Ih_prev = None

h = h0

for _ in range(max_refinements + 1):

# Trapezoidal on (-∞, ∞): h * [ g(0) + Σ_{k=1./K} (g(kh)+g(-kh)) ]

S = g(0.0)

k = 1

tail_ok_runs = 0

while k </ max_terms:

t = k * h

gp = g(t)

gm = g(-t)

S += gp + gm
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# Tail criterion: consecutive small contributions

tail_contrib = h * (abs(gp) + abs(gm))

tol_here = max(epsabs, epsrel * abs(h * S))

if tail_contrib < 0.25 * tol_here:

tail_ok_runs += 1

if tail_ok_runs >/ 3:

break

else:

tail_ok_runs = 0

k += 1

Ih = h * S

if Ih_prev is not None:

tol_refine = max(epsabs, epsrel * abs(Ih))

if abs(Ih - Ih_prev) </ tol_refine:

return Ih

Ih_prev = Ih

h *= 0.5  # refine step and repeat

return Ih_prev if Ih_prev is not None else 0.0

import math

# 1) Smooth (Clenshaw–Curtis): Runge-type on [-1,1]

f_smooth = lambda x: 1.0 / (1.0 + 25.0*x*x)

print("Clenshaw–Curtis ≈", clenshaw_curtis(f_smooth, -1.0, 1.0, n=256))

# 2) Endpoint singularity (Tanh–Sinh): ∫_0^1 x^{-1/2} dx = 2

f_sing = lambda x: 1.0 / math.sqrt(x) if x > 0 else 0.0

print("Tanh–Sinh (x^{-1/2}) ≈", tanh_sinh(f_sing, 0.0, 1.0, 1e-12, 1e-12))

# 3) Log singularity (Tanh–Sinh): ∫_0^1 log(x) dx = -1

f_log = lambda x: math.log(x) if x > 0 else 0.0

print("Tanh–Sinh (log) ≈", tanh_sinh(f_log, 0.0, 1.0, 1e-12, 1e-12))

Filon and Levin Quadrature for Oscillatory Integrals

Standard quadrature methods struggle with highly oscillatory integrals like:

∫

b

a

f(x) e

iωx

dx or ∫

b

a

f(x) cos(ωx) dx,
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especially when  is large. Filon and Levin quadrature are specialized techniques
that exploit the structure of such integrals to achieve high accuracy without
excessive sampling.
Filon Quadrature
Filon’s method is designed for integrals of the form:

where  is slowly varying and  is large. The idea is to:
Approximate  using a low-degree polynomial (typically quadratic).
Integrate the product of this polynomial with the oscillatory function
analytically.

This avoids the need to resolve every oscillation numerically and yields accurate
results even for large .
Levin Quadrature
Levin’s method handles more general oscillatory integrals:

where  is a known phase function and  is smooth. It works by:
Rewriting the integral as a differential equation using integration by parts.

Approximating the solution using basis functions (e.g., polynomials or splines).
Solving a linear system to compute the integral efficiently.

Levin’s method is especially powerful when  is nonlinear or when the oscillations
are not uniform.
When to Use

Filon: Best for integrals with known sinusoidal oscillations and smooth
amplitude functions.
Levin: Best for general oscillatory integrals with nonlinear phase or variable
frequency.

# Filon Quadrature (simplified for cosine)

function filon_cos(f, a, b, omega):

h = (b - a) / 2

x0 = a

x1 = (a + b) / 2

x2 = b

f0, f1, f2 = f(x0), f(x1), f(x2)

theta = omega * h

A = 2 * np.sin(theta) / theta

B = 4 * np.sin(theta) / (theta*/2)

C = 2 * (np.sin(theta) - theta * np.cos(theta)) / (theta*/3)

ω

∫

b

a

f(x) cos(ωx) dx or ∫

b

a

f(x) sin(ωx) dx,

f(x) ω

f(x)

ω

∫

b

a

f(x) e

iωg(x)

dx,

g(x) f(x)

g(x)
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return h * (A * f0 + B * f1 + C * f2)

# Levin Quadrature (conceptual)

function levin_integrate(f, g, a, b, omega):

# Approximate f(x) using basis functions φ_j(x)

# Solve for coefficients c_j such that:

#   d/dx [c_j(x) * e^{iωg(x)}] ≈ f(x) * e^{iωg(x)}

# Integrate analytically or numerically

return sum_j c_j * ∫ φ_j(x) dx

Imagine trying to measure a rapidly vibrating string — if you use a ruler at fixed intervals, you’ll miss the fine details.
Filon’s method says: “Let’s fit a smooth curve to the string’s shape and compute the area under the curve times the

vibration.” Levin’s method says: “Let’s understand how the vibration behaves and solve the math from that angle.”
Both are smarter than brute-force measuring every wiggle!

The Golub-Welsch algorithm computes nodes and weights for Gaussian quadrature by
solving an eigenvalue problem for the Jacobi matrix derived from orthogonal
polynomial recurrence relations.

# Golub-Welsch Algorithm Summary

# 1) Get recurrence coefficients a_k, b_k for weight w(x)

# 2) Build Jacobi tridiagonal matrix J

# 3) Eigen-decompose J → eigenvalues x_i and eigenvectors v_i

# 4) Weights w_i = μ₀ * (v_i[0])²

Generalized Gaussian Quadrature (Golub–Welsch)

Gaussian quadrature rules can be generated generically from the three-term
recurrence of orthogonal polynomials with respect to a weight  on a support 
(possibly infinite). The Golub–Welsch method constructs the symmetric tridiagonal
Jacobi matrix from recurrence coefficients and obtains nodes as its eigenvalues and
weights from the first components of its normalized eigenvectors:

J =

Building Custom Quadrature Rules

w(x) [a, b]
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, 

Here  and  come from the orthonormal polynomial recurrence for , 
is the zeroth moment,  are the nodes, and  are the weights. This single mechanism
yields Gauss–Legendre, –Hermite, –Laguerre, –Jacobi, and more.

Plain-speak: If you know how a function is “weighted” over an interval, you can build a tiny matrix whose eigenvalues

tell you exactly where to sample, and how much each sample “counts.” That’s why Gaussian rules are so accurate with
so few points.

# Generalized Gaussian quadrature via Golub–Welsch

# Families: Jacobi (incl. Legendre/Chebyshev), Laguerre, Hermite

# Utilities: map to finite intervals, integrate with given nodes/weights

import numpy as np

from math import gamma, sqrt, pi

def golub_welsch(a: np.ndarray, b: np.ndarray, mu0: float):

"""

Nodes/weights from orthonormal three-term recurrence:

  p_{k+1}(x) = (x - a_k) p_k(x) - β_k p_{k-1}(x),  β_k>0

Inputs:

  a: (n,)   diagonal coeffs a_k

  b: (n-1,) positive coeffs β_k, k=1./n-1

  mu0: zeroth moment ∫ w(x) dx over the support

Returns:

  x: (n,) nodes, eigenvalues of Jacobi matrix

  w: (n,) weights, mu0 * (first-eigenvector-components)^2

"""

n = len(a)

if len(b) !/ n - 1:

raise ValueError("b must have length n-1.")

J = np.zeros((n, n), dtype=float)

np.fill_diagonal(J, a)

off = np.sqrt(b)

np.fill_diagonal(J[1:], off)

np.fill_diagonal(J[:, 1:], off)

x, V = np.linalg.eigh(J)

w = mu0 * (V[0, :] */ 2)

return x, w

⎡

⎣

a

0

√

β

1

√

β

1

a

1

√

β

2

⋱ ⋱ ⋱

√

β

n−1

a
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⎤

⎥

⎦

x

i

= λ

i

(J), w

i

= μ

0

(v

1i

)

2

a

k

β

k

w(x) μ

0

= ∫ w(x) dx

x

i

w

i
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# ---------- Families ----------

def gauss_jacobi(n: int, alpha: float, beta: float):

"""

On [-1,1], weight (1-x)^alpha (1+x)^beta, alpha,beta>-1.

Exactness: polynomials up to degree 2n-1 under this weight.

"""

if alpha </ -1 or beta </ -1:

raise ValueError("alpha and beta must be > -1.")

k = np.arange(n, dtype=float)

a = (beta*/2 - alpha*/2) / ((2*k + alpha + beta) * (2*k + alpha + beta +

2.0))

km = np.arange(1, n, dtype=float)

num = 4.0 * km * (km + alpha) * (km + beta) * (km + alpha + beta)

den = (2*km + alpha + beta)*/2 * (2*km + alpha + beta + 1.0) * (2*km + alpha

+ beta - 1.0)

b = num / den

mu0 = 2.0*/(alpha + beta + 1.0) * gamma(alpha + 1.0) * gamma(beta + 1.0) /

gamma(alpha + beta + 2.0)

return golub_welsch(a, b, mu0)

def gauss_legendre(n: int):

"""Legendre = Jacobi(alpha=0, beta=0) on [-1,1], weight 1."""

return gauss_jacobi(n, 0.0, 0.0)

def gauss_hermite(n: int):

"""Hermite, weight exp(-x^2) on (-inf, inf)."""

a = np.zeros(n, dtype=float)

b = 0.5 * np.arange(1, n, dtype=float) if n > 1 else np.array([],

dtype=float)

mu0 = sqrt(pi)  # ∫ exp(-x^2) dx

return golub_welsch(a, b, mu0)

def gauss_laguerre(n: int, alpha: float = 0.0):

"""Laguerre, weight x^alpha * exp(-x) on [0, inf), alpha>-1."""

if alpha </ -1:

raise ValueError("alpha must be > -1.")

a = 2.0 * np.arange(n, dtype=float) + alpha + 1.0

b = np.arange(1, n, dtype=float) * (np.arange(1, n, dtype=float) + alpha) if

n > 1 else np.array([], dtype=float)

mu0 = gamma(alpha + 1.0)

return golub_welsch(a, b, mu0)

# ---------- Utilities ----------

def map_to_interval(x: np.ndarray, w: np.ndarray, a: float, b: float):

"""Affine map from [-1,1] to [a,b]."""

xm = 0.5 * (b - a) * x + 0.5 * (a + b)

wm = 0.5 * (b - a) * w

return xm, wm
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def integrate(f, x: np.ndarray, w: np.ndarray):

"""Compute sum_i w_i f(x_i) for the given rule."""

return np.dot(w, np.vectorize(f)(x))

Usage Examples

# 1) Legendre on [-1,1]: ∫ x^4 dx = 2/5, exact with n=3

x, w = gauss_legendre(3)

print(integrate(lambda t: t*/4, x, w))  # -> 0.4

# Map Legendre to [0,2] and integrate x^2

xg, wg = gauss_legendre(4)

xm, wm = map_to_interval(xg, wg, 0.0, 2.0)

print(np.dot(wm, xm*/2))  # -> 8/3 ≈ 2.666666.//

# 2) Hermite: ∫_{-∞}^{∞} x^2 e^{-x^2} dx = √π / 2, exact with n=2

xh, wh = gauss_hermite(2)

print(integrate(lambda t: t*/2, xh, wh))  # -> sqrt(pi)/2

# 3) Laguerre (alpha=0): ∫_0^∞ x^2 e^{-x} dx = Γ(3) = 2, exact with n=2

xl, wl = gauss_laguerre(2, alpha=0.0)

print(integrate(lambda t: t*/2, xl, wl))  # -> 2.0

# 4) Jacobi as Chebyshev (first kind): α=β=-1/2 on [-1,1]

xj, wj = gauss_jacobi(5, alpha=-0.5, beta=-0.5)

print(integrate(lambda t: 1.0, xj, wj))  # -> π

Notes & Best Practices:

Match the weight: These rules integrate . For plain  on finite intervals, use Legendre and

map to .

Exactness: Degree  (with respect to the weight). Increase  for non-polynomial .

Stability: Use orthonormal recurrences and symmetric tridiagonals (as here) for robust nodes/weights.

Performance: Vectorize  and reuse nodes/weights across integrals; precompute per interval/model.

f(x)w(x) ∫ f(x) dx

[a, b]

2n− 1 n f

f
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Generalized (Non‑Gaussian) Quadrature Creation

Gaussian quadrature is optimal when the weight function  is one of the classical
orthogonal polynomial families (Legendre, Hermite, Laguerre, Jacobi, etc.). But in
many applications — from heavy-tailed finance models to skewed probability densities
in physics — the natural weight function does not match these classical forms.

Generalized quadrature refers to constructing nodes  and weights  for any given
weight function  on a domain , so that:

The process typically involves:
1. Defining the weight function:  may be a PDF, a physical kernel, or any known

shape.
2. Choosing a node strategy: Quantile-based placement (via inverse CDF), clustering

where  is large, or solving orthogonal polynomial recurrences for .
3. Computing weights: Integrating  over Voronoi cells around each node, or

solving a moment-matching system so the rule is exact for a chosen basis (e.g.,
polynomials up to degree ).

4. Normalizing: If  is a PDF, ensure .

This approach generalizes the Golub–Welsch idea: instead of using pre-tabulated
recurrence coefficients for classical weights, you derive them numerically for your
custom , or bypass them entirely with direct bin-integration.

Think of it like designing a custom fishing net: Gaussian quadrature nets are pre‑made for certain fish (functions) in
certain waters (weight functions). But if you’re fishing in a strange new sea — say, one full of heavy‑tailed monsters or

oddly‑shaped schools — you weave your own net to match the catch. You decide where the knots (nodes) go and how
big each mesh (weight) should be, so you scoop up the most important parts without wasting effort.

Key Insight: Generalized quadrature lets you integrate efficiently under any weight function — from Student‑t to

Beta to exotic kernels — by matching the rule to the shape of the problem. This is especially powerful in finance,

physics, and statistics, where the “natural” weight is rarely one of the textbook cases.

Example: Custom Quadrature for a Student‑t Distribution

Sometimes the integrand’s natural weight function is not one of the classical
Gaussian families. In such cases, we can build a custom quadrature rule tuned to
that weight. For example, suppose our integration is naturally weighted by the PDF
of a Student-t distribution with  degrees of freedom:

We can:

w(x)

x

i

w

i

w(x) Ω

∫

Ω

f(x)w(x) dx  ≈  

n

∑

i=1

w

i

f(x

i

)

w(x)

w(x) w(x)

w(x)

m

w(x) ∑w

i

= 1

w(x)

ν

w(x) = f

Student-t,ν

(x)
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1. Select nodes as quantiles of the distribution (via its inverse CDF), avoiding
extreme tails.

2. Compute weights by integrating the PDF over small bins around each node.
3. Normalise the weights so they sum to 1 (if  is a PDF).

This produces a quadrature rule that concentrates effort where the distribution has
most of its mass, improving efficiency for heavy-tailed or skewed weights.

# Custom Quadrature for any distribution with PDF and PPF

function custom_quadrature(pdf, ppf, N, tail_cut):

percentiles = linspace(tail_cut, 1 - tail_cut, N)

nodes = ppf(percentiles)

weights = zeros(N)

for i in 0..N-1:

left  = midpoint(nodes[i], nodes[i-1]) if i > 0 else -∞

right = midpoint(nodes[i], nodes[i+1]) if i < N-1 else +∞

weights[i] = integrate(pdf, left, right)

weights /= sum(weights)

return nodes, weights

# Example: Student-t with ν=5

pdf = lambda x: t_pdf(x, nu=5)

ppf = lambda p: t_ppf(p, nu=5)

nodes, weights = custom_quadrature(pdf, ppf, N=50, tail_cut=0.05)

Think of it like taste‑testing soup: If you know where the flavour is concentrated — the spice pockets, the chunky
bits — you don’t take random sips. You sample exactly from those spots and weigh them according to how much
they contribute to the whole pot. That’s what a custom quadrature rule does: it samples where the action is.

Key Insight: Custom quadrature rules let you integrate efficiently under any distribution — Student‑t, Beta,

Gamma, skew‑normal — by matching the nodes and weights to the shape of the weight function.

Quantile-based Custom Quadrature (Lognormal)

# Goal: approximate E[f(S)] where S ~ Lognormal(μ, σ) without Monte Carlo.

# Idea: Use the quantile transform S = F^{-1}(p), p ~ Uniform(0,1).
# Then: E[f(S)] = ∫_0^1 f(F^{-1}(p)) dp  ≈  Σ w_i f(F^{-1}(p_i))

INPUT:

  μ, σ              # log-space mean & vol (Black–Scholes: μ = ln(S0) + (r - q - ½σ²)T, σ = σ√T)
  N                 # number of nodes (e.g., 100)

  tail_cut ∈ (0,1)  # avoid extreme tails, e.g., 1e-4

w
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CONSTRUCT NODES (uniform in probability):
  p_i = linspace(tail_cut, 1 - tail_cut, N)

  x_i = Φ^{-1}(p_i)                # standard normal quantile (any accurate approx)
  S_i = exp(μ + σ x_i)             # lognormal nodes

WEIGHTS (on p-space, sum to ~1):

  For i = 0..N-1:
    if i == 0:     w_i = (p_1 - p_0)/2

    elif i == N-1: w_i = (p_{N-1} - p_{N-2})/2
    else:          w_i = (p_{i+1} - p_{i-1})/2

  Normalize: w_i = w_i / Σ_j w_j

ESTIMATE EXPECTATION:
  E[f(S)] ≈ Σ_i w_i * f(S_i)

NOTES:

- This targets the mass where it lives (efficient for skewed/heavy tails).
- No PDF factor is needed because dp “is” the weight measure.
- Replace Lognormal by any distribution with PPF (quantile) available numerically.

  

Node Sᵢ (log scale shown visually)

Qu
an

til
e r

ul
e

~20 ~60 ~100 ~160 ~220

Quantile nodes Sᵢ with weights wᵢ ≈ Δp
Example: μ = ln(100), σ = 0.2, N = 100

Custom quantile rule for Lognormal: take evenly spaced probabilities pᵢ, map through the PPF to nodes Sᵢ, and use Δp

weights.

Creating your own quadrature rule is like designing a custom measuring tool for a specific shape. If you know
something about what you're measuring (like where it's bumpy or flat), you can place your measurement points
strategically to get accurate results with fewer measurements.

Key Insight: More knowledge about the function → fewer nodes needed. Clever node placement → higher

accuracy with same computation.

Contemporary quadrature implementations leverage parallel computing architectures:
GPU acceleration for evaluating integrands at multiple nodes simultaneously

Modern Quadrature Architectures
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Multi-core processing for dividing integration domains
Distributed computing for high-dimensional integrals

Modern quadrature is like having a team of people measure a large field together instead of one person doing all the
work. GPUs are like having hundreds of helpers working in parallel, making the process much faster for complex

problems.

GPU-Accelerated Quadrature with CUDA

The core idea is to map each node evaluation  to an independent GPU thread. This
is ideal for embarrassingly parallel quadrature where nodes do not depend on each
other. The GPU computes values in parallel; the host performs the weighted
reduction.

# =========================

# CUDA C+/ (single GPU)

# =========================

__device__ double f(double x) {

// device-compatible integrand

return .//;

}

__global__ void eval_integrand(const double* __restrict__ nodes,

   double* __restrict__ out,

   int N) {

int i = blockIdx.x * blockDim.x + threadIdx.x;

if (i < N) out[i] = f(nodes[i]);

}

double quad_gpu(const double* nodes_h, const double* weights_h, int N) {

// 1) Allocate on device

double *nodes_d, *vals_d;

cudaMalloc(&nodes_d, N * sizeof(double));

cudaMalloc(&vals_d,  N * sizeof(double));

// 2) H2D copy

cudaMemcpy(nodes_d, nodes_h, N * sizeof(double), cudaMemcpyHostToDevice);

// 3) Launch kernel

int TPB = 256;

int BPG = (N + TPB - 1) / TPB;

eval_integrand</>/(nodes_d, vals_d, N);

// 4) D2H copy and weighted sum on host

std:/vector vals(N);

f(x

i

)
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cudaMemcpy(vals.data(), vals_d, N * sizeof(double), cudaMemcpyDeviceToHost);

double sum = 0.0;

for (int i = 0; i < N; +/i) sum += weights_h[i] * vals[i];

cudaFree(nodes_d); cudaFree(vals_d);

return sum;

}

# =========================

# Python (Numba CUDA, single GPU)

# =========================

from numba import cuda

import numpy as np

@cuda.jit(device=True)

def f(x):

# device-compatible integrand

return .//

@cuda.jit

def eval_integrand(nodes, out):

i = cuda.grid(1)

if i < nodes.size:

out[i] = f(nodes[i])

def quad_gpu(nodes, weights):

N = len(nodes)

d_nodes  = cuda.to_device(nodes)

d_vals   = cuda.device_array(N, dtype=np.float64)

TPB = 256

BPG = (N + TPB - 1) // TPB

eval_integrand[BPG, TPB](d_nodes, d_vals)

vals = d_vals.copy_to_host()

return np.dot(weights, vals)

Analogy: Think of a giant kitchen with hundreds of chefs. Each chef cooks one dish (node) at the same time. You just
plate the dishes (sum with weights) and serve the final result.

Multi‑GPU Quadrature for Huge Jobs
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When a single GPU is not enough (memory or throughput), split the node set into
shards and assign each shard to a different GPU. Each GPU computes its partial
weighted sum; the host aggregates the partials. Keep shards balanced to maximize
utilization.

# =========================

# CUDA C+/ (multi‑GPU, single node)

# =========================

double quad_multi_gpu(const double* nodes, const double* weights,

  long long N, int num_gpus) {

long long chunk = (N + num_gpus - 1) / num_gpus;

std:/vector partial(num_gpus, 0.0);

parallel_for (int g = 0; g < num_gpus; +/g) {

cudaSetDevice(g);

long long start = g * chunk;

long long end   = std:/min(start + chunk, N);

long long M     = std:/max(0LL, end - start);

if (M =/ 0) { partial[g] = 0.0; continue; }

// Device alloc

double *d_nodes, *d_vals;

cudaMalloc(&d_nodes, M * sizeof(double));

cudaMalloc(&d_vals,  M * sizeof(double));

// Copy shard of nodes

cudaMemcpy(d_nodes, nodes + start, M * sizeof(double),

cudaMemcpyHostToDevice);

// Launch kernel

int TPB = 256, BPG = (int)((M + TPB - 1) / TPB);

eval_integrand</>/(d_nodes, d_vals, (int)M);

// Copy back and reduce on host

std:/vector vals(M);

cudaMemcpy(vals.data(), d_vals, M * sizeof(double),

cudaMemcpyDeviceToHost);

double s = 0.0;

for (long long i = 0; i < M; +/i) s += weights[start + i] * vals[i];

partial[g] = s;

cudaFree(d_nodes); cudaFree(d_vals);

}

// Host aggregate

double total = 0.0;
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for (int g = 0; g < num_gpus; +/g) total += partial[g];

return total;

}

# =========================

# Python (Numba CUDA, multi‑GPU, single node)

# =========================

from numba import cuda

import numpy as np

@cuda.jit

def eval_integrand(nodes, out):

i = cuda.grid(1)

if i < nodes.size:

out[i] = f(nodes[i])

def quad_multi_gpu(nodes, weights, num_gpus):

N = len(nodes)

chunk = int(np.ceil(N / num_gpus))

partials = []

for g in range(num_gpus):

cuda.select_device(g)

start, end = g*chunk, min((g+1)*chunk, N)

if end </ start: partials.append(0.0); continue

nodes_g = nodes[start:end]

weights_g = weights[start:end]

d_nodes  = cuda.to_device(nodes_g)

d_vals   = cuda.device_array(len(nodes_g), dtype=np.float64)

TPB = 256

BPG = (len(nodes_g) + TPB - 1) // TPB

eval_integrand[BPG, TPB](d_nodes, d_vals)

vals = d_vals.copy_to_host()

partials.append(np.dot(weights_g, vals))

return float(np.sum(partials))

Best practices:

Shard evenly: Balance work to avoid idle GPUs.

Batch large jobs: Process nodes in tiles that fit device memory.
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Overlap transfers: Use pinned memory, cudaMemcpyAsync, and streams to overlap copy/compute.

Stable reduction: For very large N, do hierarchical Kahan or pairwise sums.

Let's Get Colossal: Multi‑Node, Multi‑GPU with MPI + CUDA

Scale across a cluster by assigning each Message Passing Interface (MPI) rank a GPU
(1 rank ↔ 1 GPU). Partition the workload globally across ranks so that each GPU
processes a distinct subset of data or quadrature nodes. Each rank computes a
partial weighted sum locally on its GPU, and then participates in a collective all-
reduce operation to combine these partial results into the final integral. For
systems with multiple GPUs per node, use NCCL (NVIDIA Collective Communications
Library) to perform fast intra-node reductions, followed by MPI for inter-node
reductions across the cluster. This hierarchical strategy minimizes communication
overhead and scales efficiently from a single node to large multi-node GPU clusters.

Imagine you have many calculators (GPUs), each held by a different person (MPI ranks) in a big team spread across
different rooms (nodes). Each person is given a piece of the problem to solve, and they use their calculator to work

out their share. When everyone is done, they all shout out their answers into a system that adds everything together
(the all-reduce). If a room has multiple people with calculators, they first whisper to each other to combine their

results quickly (NCCL within a node), and then one representative from the room shares the total with the rest of the
team across all rooms (MPI across nodes). This way, the work gets done much faster than if only one person did all

the calculations.

# ===========================================

# MPI + CUDA (C+/-style design, 1 rank ↔ 1 GPU)

# ===========================================

int main(int argc, char*/ argv) {

MPI_Init(&argc, &argv);

int world_size, world_rank;

MPI_Comm_size(MPI_COMM_WORLD, &world_size);

MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

// Map rank to local GPU (e.g., via local_rank env)

int local_rank = get_local_rank();           // implementation-specific

cudaSetDevice(local_rank);

// Global partition

long long N = total_nodes();

long long chunk = (N + world_size - 1) / world_size;

long long start = world_rank * chunk;

long long end   = std:/min(start + chunk, N);
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long long M     = std:/max(0LL, end - start);

// Tile loop for out-of-core workloads

double partial_sum = 0.0;

for (long long off = 0; off < M; off += TILE) {

long long m = std:/min((long long)TILE, M - off);

// Stage tile nodes/weights (H2D async with pinned host memory)

cudaMemcpyAsync(d_nodes, h_nodes + start + off, m*sizeof(double),

H2D, stream);

eval_integrand</>/(d_nodes, d_vals, (int)m);

cudaMemcpyAsync(h_vals, d_vals, m*sizeof(double), D2H, stream);

cudaStreamSynchronize(stream);

// Host-side weighted sum (or device-side reduction kernel)

partial_sum += weighted_sum(h_vals, h_weights + start + off, m);

}

// Global reduction

double total = 0.0;

MPI_Allreduce(&partial_sum, &total, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);

// Final result on all ranks

if (world_rank =/ 0) print(total);

MPI_Finalize();

}

# ===========================================

# Python (mpi4py + Numba CUDA), 1 rank ↔ 1 GPU

# ===========================================

from mpi4py import MPI

from numba import cuda

import numpy as np

@cuda.jit

def eval_integrand(nodes, out):

i = cuda.grid(1)

if i < nodes.size:

out[i] = f(nodes[i])

def quad_mpi_cuda(all_nodes, all_weights):

comm = MPI.COMM_WORLD

size = comm.Get_size()

rank = comm.Get_rank()

# Rank→GPU mapping (e.g., modulo GPUs per node)
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gpu_id = rank % cuda.gpus.lst.size

cuda.select_device(gpu_id)

N = len(all_nodes)

chunk = (N + size - 1) // size

start, end = rank*chunk, min((rank+1)*chunk, N)

partial = 0.0

TILE = 1_000_000  # tune to memory

for off in range(start, end, TILE):

hi = min(off + TILE, end)

nodes = all_nodes[off:hi]

weights = all_weights[off:hi]

d_nodes = cuda.to_device(nodes)

d_vals  = cuda.device_array(nodes.size, dtype=np.float64)

TPB = 256

BPG = (nodes.size + TPB - 1)//TPB

eval_integrand[BPG, TPB](d_nodes, d_vals)

vals = d_vals.copy_to_host()

partial += float(np.dot(weights, vals))

total = comm.allreduce(partial, op=MPI.SUM)

return total

Conceptual tips for Colossal Titans:

Ranks and GPUs: Use one MPI (Message Passing Interface) rank per GPU (Graphics Processing Unit); bind

ranks to GPUs deterministically (e.g., local_rank, which is the rank ID within a node).

Two-tier reduction: Intra-node (NCCL = NVIDIA Collective Communications Library all-reduce) then inter-

node (MPI Allreduce) for efficiency.

Overlap: Use pinned host buffers (page-locked host memory for faster transfer) + multiple CUDA streams

(asynchronous command queues on the GPU) to overlap H2D (host-to-device) / D2H (device-to-host) transfers

with compute.

Chunking: Tile nodes when they exceed device memory; pipeline tiles per stream to keep GPUs busy.

Numerical care: Use pairwise summation (tree-like addition order) or Kahan summation (compensated

arithmetic to reduce round-off error) for large reductions; validate against CPU (Central Processing Unit)

baselines.

Load balance: If f(x) cost varies across x, use work-stealing (idle ranks grab extra work) or dynamic shards

(divide workload adaptively) to avoid stragglers.
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Node 1

GPU 0

Rank 0

GPU 1

Rank 1

NCCL (intra-node)

Node 2

GPU 2

Rank 2

GPU 3

Rank 3

NCCL (intra-node)
MPI (inter-node)

All-Reduce
Combine partial weighted sums

Legend: GPU (MPI rank) NCCL (intra-node reduction) MPI (inter-node reduction)

Diagram: GPUs are mapped 1:1 with MPI ranks; intra-node reductions use NCCL for speed and an inter-node MPI all-reduce
completes the global aggregation. Drop this SVG into your HTML — it is scalable and editable.

Analogy: Imagine mapping an entire continent with many fleets of drones. Each ship (node) carries drones (GPUs),

each drone scans a region (shard). Ships first merge their maps locally, then all ships merge their maps together into
one seamless atlas.

Author’s note: This “Quantum Quadrature” section describes an imaginary concept — how quantum integration techniques could perhaps
be applied to numerical quadrature in finance and other fields. While the underlying algorithms (e.g., quantum amplitude estimation) are real
and actively researched, large‑scale, production‑ready implementations are not yet available on current quantum hardware. This is a
projection of where the technology may head, rather than a description of tools you can use today.

Continuous (classical)

Value varies smoothly — any intermediate values allowed.

Quantized (quantum)

Jump

Values are restricted to discrete levels — transitions happen as jumps

Quantum = discrete "packets" or levels. Classical = continuous values. Measurement yields one allowed quantum.

Illustration: left = continuous variable (any value allowed), right = quantized levels (discrete steps).

Classical quadrature rules — even when accelerated on GPUs or clusters — still
evaluate the integrand at a finite set of nodes, summing weighted function values to

Past infinity, past certainty — into the (purely conceptual) quantum fold of

Quadrature
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approximate the integral. Quantum quadrature takes a fundamentally different
approach: it encodes the integration problem into the amplitudes of a quantum state
and applies quantum amplitude estimation (QAE) to extract the expectation value with
quadratically fewer samples than classical Monte Carlo methods require. Instead of
looping over nodes one by one, a quantum computer can, in principle, prepare a
superposition over all nodes simultaneously, evaluate the integrand across that
superposition, and use interference to read out the mean value.

In theory, this could make certain high-dimensional or computationally expensive
integrals tractable, especially when the integrand can be efficiently encoded as a
quantum oracle and the weight function can be prepared as a quantum state. However,
large-scale, production-ready implementations of such “quantum quadrature” are not
yet available on current hardware — this is a forward-looking concept based on
existing quantum algorithms like QAE, rather than a tool you can run today.

In practical terms, quantum amplitude estimation works by preparing a quantum state
whose amplitudes reflect the probability distribution of interest, then using
controlled interference to estimate the average value of the integrand with far
fewer oracle calls than classical sampling would require. The use of superposition
means the quantum processor can, in a single logical step, represent and evolve all
node evaluations at once — a form of parallelism fundamentally different from
splitting work across classical cores or GPUs. This theoretical advantage is why
quantum quadrature is attracting attention for problems like multi-dimensional Monte
Carlo in finance or physics, where classical cost grows prohibitively. That said,
today’s quantum devices remain limited in qubit count, coherence time, and error
rates, so these methods are still in the research and prototyping stage rather than
in production deployment.

Term Explainers
Quantum Oracle: In quantum computing, an oracle is a special-purpose quantum circuit that encodes a function  into the state
of your qubits. It’s a “black box” you can query inside a quantum algorithm without knowing its internal details, but it must be unitary
(reversible) so it can run forwards and backwards. For integration problems, the oracle is built to mark amplitudes or phases according
to , so that algorithms like Quantum Amplitude Estimation can extract the average value efficiently.

Layman’s view: Think of it as a sealed vending machine that, when you press a button labelled , instantly lights up the answer
. In a quantum setting, you can press all the buttons at once in superposition, and the machine lights up all the answers in

parallel.

Qubits: A qubit (quantum bit) is the basic unit of quantum information. Unlike a classical bit, which is either 0 or 1, a qubit can be in a
superposition of 0 and 1:

where  and  are complex amplitudes with . Multiple qubits can also be entangled, meaning their states are linked in
ways that have no classical counterpart.

Layman’s view: If a classical bit is like a coin lying flat — heads (0) or tails (1) — a qubit is like a spinning coin that’s both heads
and tails until you catch it. And if you spin two coins together in just the right way, they can become entangled — flip one, and the
other “knows” instantly, no matter how far apart they are.

f(x)

f(x)

x

f(x)

|ψ⟩ = α|0⟩+ β|1⟩

α β |α|

2

+ |β|

2

= 1
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Given a weight function  (often a probability density) and an integrand , we
can write:

The quantum procedure:
1. State preparation: Prepare a quantum state  so that measuring

yields samples from .
2. Function encoding: Implement  as a quantum oracle  that encodes  into an

ancilla qubit's amplitude or phase.
3. Amplitude estimation: Use QAE to estimate the mean value of  over  with

 complexity instead of .

4. Result extraction: The estimated amplitude corresponds to the integral value (up
to known scaling factors).

This approach is, if sound, quite promising for high-dimensional integrals in
finance, physics, and Bayesian inference, where classical methods struggle.

Think of quantum quadrature like tasting every spoonful of soup at once in a quantum superposition. Instead of
sampling one spoonful at a time, you prepare a magical state that contains the flavour of the whole pot. Then, with a

clever interference trick, you read out the average flavour with far fewer sips than any classical chef could manage.

Pseudocode: Quantum Amplitude Estimation for Integration

# Quantum Quadrature via Amplitude Estimation (conceptual)

Given:

w(x)  - weight function (PDF)

f(x)  - integrand

ε     - target error

1. Discretize domain Ω into M basis states |x_j⟩
2. Prepare |ψ_w⟩ = Σ_j sqrt(w(x_j)) |x_j⟩

# State preparation circuit encodes w(x) into amplitudes

3. Define oracle U_f:

|x_j⟩|0⟩ → |x_j⟩( sqrt(1 - f(x_j))|0⟩ + sqrt(f(x_j))|1⟩ )
# Encodes f(x_j) into amplitude of ancilla qubit

4. Construct Grover-like operator Q from U_f and |ψ_w⟩
5. Apply Quantum Amplitude Estimation:

- For k = 0./m-1:

   Apply controlled-Q^(2^k) to |ψ_w⟩
- Perform inverse Quantum Fourier Transform on control register

- Measure to obtain estimate â of amplitude a

w(x) f(x)

I = ∫

Ω

f(x)w(x) dx

|ψ

w

⟩ =∑

x

√

w(x) |x⟩

w(x)

f(x) U

f

f(x)

f(x) w(x)

O(1/ϵ) O(1/ϵ

2

)
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6. Return I ≈ â  (scaled appropriately if w(x) not normalized)

Key Advantages

Quadratic speedup in sample complexity over classical Monte Carlo.
Natural fit for integrals expressed as expectations under a known distribution

.
Potential to handle very high-dimensional problems where classical quadrature is
infeasible.

Challenges

State preparation: Efficiently encoding arbitrary  into amplitudes is
non-trivial.

Oracle construction:  must be implemented as a quantum circuit with low
depth.

Hardware limits: Current 'Noisy Intermediate-Scale Quantum' (NISQ) devices have
noise and qubit count constraints.

Discretization: Continuous domains must be mapped to finite qubit registers.

Key Insight: Quantum quadrature doesn’t replace classical methods today — but it points to a future where integrals

that are currently intractable could be estimated efficiently by exploiting quantum parallelism and amplitude

estimation. What’s real and in active use right now is Quantum Monte Carlo — though the term means different

things in different contexts. In physics and chemistry, it refers to powerful classical stochastic algorithms for

simulating quantum systems. In quantum computing theory, it describes algorithms like Quantum Amplitude

Estimation that, in principle, can accelerate Monte Carlo–style integration by a quadratic factor. The former is a

mature, widely deployed tool; the latter is a 'maybe' approach awaiting hardware capable of running it at scale.

Quantum coffee break: I tried to make a quantum leap into another dimension… but ended up in the kitchen instead,

with a cup noodle and coffee. I have no recollection of anything. Apparently my wavefunction collapsed towards the
microwave. That said, let's resume with actual 'our'-worldly algorithmic applications and methods.

Black-Scholes Model

The Black-Scholes model prices options under geometric Brownian motion:

w(x)

w(x)

f(x)

Option Pricing with Quadrature Methods
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where

Gauss-Hermite for Option Pricing

Using the identity for normal distribution:

where  is the standard normal density. Gauss-Hermite quadrature approximates this
as:

Strike-Aware Formulation

Rather than lazily integrating over the entire real line, we can more intelligently
integrate from the strike price to infinity (the value domain):

where  is the log-normal density function.

# Strike-aware Gauss-Legendre Pseudocode

sigsqrt = sigma * sqrt(T)

mu = (r - q) * T + 0.5 * sigma^2 * T

z_star = -(ln(S0/K) + mu) / sigsqrt

a = z_star

b = z_star + 10 * sigsqrt  # Upper bound

x_gl, w_gl = gauss_legendre_nodes_weights(n)

sum = 0

for i in 1./n:

z = 0.5*(b-a)*x_gl[i] + 0.5*(a+b)

S = S0 * exp(mu + sigsqrt * z)

payoff = max(S - K, 0)

density = (1/sqrt(2*pi)) * exp(-0.5*z*z)

sum += w_gl[i] * payoff * density

C = exp(-r*T) * 0.5*(b-a) * sum

C = S

0

N(d

1

) −Ke
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2

)
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σ
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Strike-aware quadrature is like knowing exactly where the treasure is buried and digging only in that area instead of

searching the entire island. It's more efficient because you focus your efforts where it matters most. And for that we
need an experienced scout or treasure hunter holding a Geiger Counter, not a radar.

Carr-Madan Quadrature Formulation

The Carr–Madan approach prices calls by working in the Fourier domain with an
exponentially damped payoff to ensure integrability. Let  and choose  such
that the damped call  has a finite Fourier transform. Define the log-price
characteristic function under the risk-neutral measure, . Then a common
quadrature form is

Practical details:

Damping: Typical choices  stabilize the integral across many models
(Black–Scholes, Heston, Variance-Gamma, etc.).

Oscillations: Use the real–imaginary split  to
reduce cancellation and control error.

Truncation: Replace  with . Increase  until the tail is negligible
or use a variable transform (e.g., tanh–sinh) to compress infinity.

Grid vs. FFT: For a surface of strikes, discretize  on a uniform grid and use
FFT. For individual strikes, a high-order quadrature (Clenshaw–Curtis, Gauss–
Laguerre on a mapped domain, or adaptive GK15) is often simpler and more
precise.

Puts: Recover with put–call parity or use a separate damping regime (negative 
).

# Carr–Madan by direct quadrature (single strike)

input: S0, r, q, T, K, alpha>0, charfun  # charfun(u) = E[e^{iu ln S_T}] under Q

k    = ln(K)

psi(u) = exp(-r*T) * charfun(u - i*(alpha + 1))

 / (alpha*alpha + alpha - u*u + i*(2*alpha + 1)*u)

# real–imag split integrand for stability

integrand(u) = cos(u*k) * Re(psi(u)) + sin(u*k) * Im(psi(u))

# choose truncation and quadrature

k = lnK α > 0

e

αk

C(T ,K)

φ(u) = E[e

iu lnS

T

]

C(T ,K) =

e

−αk

π

∫

∞

0

R{e

−iuk

ψ(u)} du, ψ(u) =

e

−rT

φ(u− i(α+ 1))

α

2

+ α− u

2

+ i(2α+ 1)u

.

α ∈ [1, 2]

R{e

−iuk

ψ(u)} = cos(uk)Rψ(u) + sin(uk)Iψ(u)

[0,∞) [0,U

max

] U

max

u

α
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Umax = choose_cutoff_by_tolerance()

I = adaptive_GaussKronrod( integrand, 0, Umax )  # or Clenshaw–Curtis on [0,Umax]

price = exp(-alpha*k) * I / pi

return price

# Carr–Madan by FFT (many strikes on a log-strike grid)

input: S0, r, q, T, alpha, N (power of two), du (u spacing)

u_j   = j * du, j=0./N-1

k0    = chosen_min_log_strike

dk    = 2*pi/(N*du)

# compute damped transform samples with Simpson or trapezoid weights

for j in 0./N-1:

u = u_j

psi = exp(-r*T) * charfun(u - i*(alpha + 1))

/ (alpha*alpha + alpha - u*u + i*(2*alpha + 1)*u)

g[j] = psi * exp(-i*u*k0) * w_j     # w_j: integration weights (e.g., Simpson)

# inverse FFT-like recovery

G = FFT(g)

for m in 0./N-1:

k_m   = k0 + m*dk

C[m]  = exp(-alpha*k_m) * Re(G[m]) / pi

# map log-strikes k_m to strikes K_m = exp(k_m)

return { (K_m, C[m]) } across m

Intuition: Instead of adding up payoffs in price space, Carr–Madan moves to the “frequency” world, where complex
shapes become easier to handle. Damping acts like a gentle fade‑out so the integral doesn’t “ring” at infinity. For

many strikes, the FFT turns thousands of prices into a single lightning‑fast transform. The author has also shown in
another article 'Fast Fourier Transform as an Engine for the Convolution of PDFs and Black-Scholes Option Pricing

Using Python' that one could integrate the payoff and the PDF directly using FFT convolution, which will churn out
thousands of option values for thousands of corresponding spot prices. These can be interpolated to a high accuracy

for any spot price using a Hermite (PCHIP) spline.

When to use: If you have a clean characteristic function (BS, Heston, Lévy models), Carr–Madan is ideal for fast,

multi‑strike pricing (FFT), or precise single‑strike pricing (quadrature). Tune , the truncation , and use a stable

real–imag split.

Characteristic Functions
Black–Scholes (Log-Normal) model:

α U

max
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Heston (Stochastic Volatility) model:

Variance-Gamma (Lévy) model:

Stop-Loss Premium Formulation

The call can be seen as a discounted stop-loss premium (a tail expectation):

A powerful reformulation integrates over quantiles rather than prices:

where  is the CDF of  and  its quantile (PPF). This is model-agnostic: any
distribution with a PPF can be priced this way. It directly targets the region

 where the payoff is nonzero, and it avoids oscillations entirely.

In practice, when specifying  under the risk-neutral measure , a drift correction
is often required so that the discounted asset price is a martingale. This is
typically achieved via a Girsanov change of measure, adjusting the drift term in the
log-price process so that . For Lévy or other non-Gaussian models, this
correction ensures the characteristic exponent  satisfies . Note that
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+
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∞
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ψ(u) ψ(−i) = r− q

Mind the Gap (Under the Curve)

47/85

Gene Boo -  Mi nd t he Gap ( Under  t he Cur ve)  r ev- 4

A Compendi um on Quadr at ur e Met hods by Gene Boo



this applies to all the option pricing models in this document.

If the PPF is not available in closed form but the moment generating function (MGF)
 of  is known, one can recover  or its tail probabilities via

numerical Laplace/Fourier inversion of the MGF or characteristic function (FT of the
PDF). This allows the same stop-loss/quantile integration framework to be applied to
a wide class of distributions, including those defined only through their MGF.

Numerical stability: The integrand is monotone in ; use adaptive Simpson or
Gauss–Kronrod on .
Endpoint handling: Near , the integrand may be flat. Use an endpoint map
(e.g., ) if needed to expose exponential tail decay.
Heavy tails: If the tail is heavy, use a tail cut  with a bound for the
remainder, or accelerate with a change of variables.
Links: The integral is the (discounted) Tail Value-at-Risk (TVaR) of  shifted
by : .

# Stop-Loss premium by quantile integration (model-agnostic)

input: K, r, T, CDF F(s), quantile PPF Q(p) = F^{-1}(p)

pK = F(K)

integrand(p) = Q(p) - K

# adaptive integration on [pK, 1]

# consider change of variables to improve endpoint behavior:

#   p = 1 - exp(-y), y in [ -ln(1 - pK), ∞ )

#   dp = exp(-y) dy

#   ∫_{pK}^1 (Q(p) - K) dp = ∫_{y0}^{∞} ( Q(1 - e^{-y}) - K ) e^{-y} dy

if endpoint_flat:

y0 = -ln(1 - pK)

J  = adaptive_GaussKronrod( lambda y: (Q(1 - exp(-y)) - K)*exp(-y), y0, Ymax )

else:

J  = adaptive_Simpson( integrand, pK, 1 )

price = exp(-r*T) * J

return price

# Alternative: direct price-space integration with mapping to (0, ∞)

M

X

(t) = E[e

tX

] X = lnS

T

F

p

[F(K), 1]

p → 1

p = 1 − e

−y

p

max

< 1

S

T

K C = e

−rT

∫

1

F(K)

F

−1

(p) dp− e

−rT

K (1 − F(K))
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# substitute s = K + x, x in [0, ∞)

# C = e^{-rT} ∫_0^∞ x * f_S(K + x) dx

# map x = g(t) using tanh–sinh or x = exp(t) - 1 transforms for robust tails

g(t)   = tanh_sinh_map_to_infinity(t)     # e.g., x = tanh_sinh_transform(t)

g'(t)  = derivative_of_g(t)

integrand(t) = g(t) * f_S(K + g(t)) * g'(t)

price = e^{-rT} * trapezoid_over_R( integrand )  # DE tanh–sinh on t ∈ (-∞, ∞)
return price

Let's discuss why this is a superb formulation. The stop-loss premium formulation
powerfully rewrites the call price as

Because the quantile (PPF)  is strictly increasing on , the integrand
; is a monotonic, single-sign function on . In contrast to

integrating a bell-shaped density (with its peaks and tails) or an oscillatory
Fourier kernel, this smooth, unidirectional curve:

Eliminates oscillations and sign-changes, so uniform or adaptive quadrature
converges with far fewer nodes.
Delivers stable, predictable error estimates—no hidden extrema to confound local
refinement.

Restricts computation to the true payoff region , avoiding wasted
evaluations where the payoff is zero.

Works with any model that provides an invertible CDF–quantile pair, from
lognormal to heavy-tailed or skewed distributions.

C = e

−rT

∫

1

F(K)

(F

−1

(p) −K) dp.

F

−1

(p) [0, 1]

F

−1

(p) −K [F(K), 1]

[F(K), 1]
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1) Standard PDF integral 2) Stop-loss (quantile) 3) Carr–Madan (Fourier)

s (underlying)

f(s)

∫ (s - K)_+ f(s) ds — integrate payoff × density

p (probability)

F⁻¹(p) − K

∫_{F(K)}^{1} (F⁻¹(p) − K) dp — monotone, single sign

u (Fourier freq.)

Re[Kernel×φ]

∫ e^{-iu ln K} φ(u) W(u) du — oscillatory kernel

Visualization: left = PDF × payoff; middle = stop-loss quantile; right = Carr-Madan (oscillatory)

Intuition: The stop‑loss view says, “Only the part of the distribution above the strike matters.” - just like the strike-
aware Gauss-Legendre mentioned above. Sliding to quantiles lets you walk straight along that tail from “just at the

strike” to “way above it,” adding up how much the option is in‑the‑money at each probability level.

When to use: If your model gives a quantile function (PPF) or an easy way to sample/invert the CDF, this method is

trivial to implement, robust, and fast for single‑strike pricing. It generalizes beyond lognormal to any distribution

with a PPF and pairs naturally with your custom‑quadrature toolkit on .

Practical guidance and examples

Choosing parameters and transforms
Carr–Madan: Start with . For quadrature, increase  until the residual
tail is below tolerance; for FFT, pick  and  to cover the log-strike span
with desired resolution . Always use the real–imag split.
Stop-Loss: Use adaptive Gauss–Kronrod on . If the integrand is too flat near
1, apply  and integrate over  with tanh–sinh or a halved-step
trapezoid (double-exponential decay aids convergence).

Model examples (sketch)
Black–Scholes: , with , . For
Stop-Loss, .

Heston: closed-form  available → Carr–Madan integrates cleanly; Stop-Loss is
viable if you can numerically invert the CDF or build a monotone spline PPF from
samples.
Lévy models: characteristic functions are native; Carr–Madan is usually
preferred for speed and stability; Stop-Loss works if a PPF or accurate CDF is
available.

# Error control heuristics

[p

K

, 1]

α ∈ [1, 2] U

max

Δu N

Δk = 2π/(N Δu)

[p

K

, 1]

p = 1 − e

−y

y ∈ [y

0

,∞)

φ(u) = exp(ium−

1

2

σ

2

T

u

2

) m = lnS

0

+ (r− q −

1

2

σ

2

)T σ

T

= σ

√

T

Q(p) = exp(m+ σ

T

Φ

−1

(p))

φ(u)
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# Carr–Madan tail test:

# Increase Umax until |∫_{Umax}^{Umax+Δ} integrand(u) du| < tol_tail

for trial in [U1, U2, U3]:

tail_est = panel_quadrature(integrand, trial, trial + deltaU)

if abs(tail_est) < tol_tail:

Umax = trial; break

# Stop-Loss endpoint test:

# Refine adaptive integration until successive estimates differ < tol

I_prev = None

for refine in 1./R:

I = adaptive_GK(integrand_on_quantiles, pK, 1, tol_refine)

if I_prev is not None and abs(I - I_prev) < tol:

break

I_prev = I; tol_refine *= 0.5

Some Notes:

Monte Carlo: A numerical integration technique based on random sampling of the domain. It converges slowly

in one dimension ( ) but its convergence rate is independent of dimension, making it valuable for very

high‑dimensional problems such as portfolio risk or path‑dependent option pricing.

Lebesgue integration: A measure‑theoretic framework that integrates by summing over ranges of function

values rather than slices of the domain. It underpins modern probability theory and risk‑neutral pricing. Monte

Carlo methods are a natural numerical realisation of Lebesgue integration when expectations are taken under a

probability measure. Deterministic quadrature rules like Gaussian quadrature can also be seen as

Lebesgue‑style in that they weight function values according to a measure (e.g. a weight function ).

Riemann sums: The classical definition of an integral as the limit of sums of  over partitions of the

domain. In numerical analysis, this viewpoint leads directly to rectangular rules (left, right, midpoint), and by

refinement to trapezoidal and Simpson’s rules. These are efficient for smooth, low‑dimensional integrands but

can be inefficient for oscillatory payoffs or high‑dimensional finance problems, if implemented naively.

Black–Scholes KO (single observation) via custom quantile quadrature

This is an example just to show that using quadrature means in code, you are really
just looking at the integral as it is penned on paper, any modifications to the
payoff are direct modifications in the code, making everything very clear, concise,
and easy to manage:

# Price: European up-and-out call with single barrier observation at T

# Payoff: (S_T - K)_+ * 1{ S_T < B }         # knock-out if S_T >/ B

# Under risk-neutral BS: ln S_T ~ N(m, v),   m = ln S0 + (r - q - ½σ²)T,   v = σ²

T

INPUT:

O(N

−1/2

)

w(x)

f(ξ

i

)Δx

i

Mind the Gap (Under the Curve)

51/85

Gene Boo -  Mi nd t he Gap ( Under  t he Cur ve)  r ev- 4

A Compendi um on Quadr at ur e Met hods by Gene Boo



S0, K, B, T, r, q, σ

N        # e.g., 200 quantile nodes

tail_cut # e.g., 1e-4

SETUP (lognormal params):

m = ln(S0) + (r - q - 0.5*σ^2)*T

s = σ * sqrt(T)

NODES (probability space):

p_i = linspace(tail_cut, 1 - tail_cut, N)

z_i = Φ^{-1}(p_i)

S_i = exp(m + s * z_i)

WEIGHTS (Δp):

w_i from centered differences on p_i (normalize to 1)

PAYOFF FILTER:

for each i: g_i = max(S_i - K, 0) * 1{ S_i < B }

PRICE:

V ≈ exp(-r*T) * Σ_i w_i * g_i

NOTES:

- This is extremely stable: monotone payoff, no oscillations.

- For multi-observation barriers, integrate conditional survival per step or

switch to path methods.

Quadrature methods extend naturally to more complex models, where the option price
is still an expectation under the risk-neutral measure but the underlying dynamics
change the form of the characteristic function or density:

Stochastic volatility models (Heston, SABR):
Heston’s log-price  has a closed-form characteristic function:

Beyond Black-Scholes & Finance

X

t

= lnS

t

φ

H

(u;T ) = exp{i u lnS

0

+ i u (r− q)T

+

κθ

σ

2

[(κ− iρσ u− d)T − 2 ln(

1 − g e

−dT

1 − g

)]

+

v

0

σ

2

κ− iρσ u− d

1 − g e

−dT

(1 − e

−dT
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with

Quadrature methods (Carr–Madan, COS, etc.) integrate this  against the chosen
payoff kernel.
Jump-diffusion processes (Merton, Kou):
Merton’s model augments Black–Scholes with normally distributed jumps:

where  is jump intensity,  and  are jump mean and volatility. Kou’s
double-exponential jumps replace the Gaussian jump term with .

Variance Gamma and Lévy processes:
Variance Gamma has characteristic function

with drift correction . More generally, for a Lévy process with
exponent ,  and quadrature integrates this against the payoff
transform.
Multi-asset options (tensor product quadrature, sparse grids):
For  underlyings with joint density , the price is

Tensor-product Gaussian quadrature uses , while
sparse grids reduce the number of nodes from  to  for smooth
payoffs.

Quadrature is like a Swiss Army knife for quantitative finance—once you understand how to use it, you can price all

sorts of financial instruments, not just simple options. It's particularly useful for options that depend on multiple
assets or have unusual payoff structures.

Multidimensional Integrals

For multidimensional integrals, tensor products of 1D rules can be used, but the number of points grows exponentially

with dimension. Smolyak sparse grids dramatically reduce nodes while maintaining accuracy for smooth integrands.

Full tensor product quadrature. Given 1D rules on ,

d =

√

(κ− iρσ u)

2

+ σ

2

(u

2

+ i u), g =
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the -dimensional integral on  is approximated by the tensor product

with node count  for  — the “curse of dimensionality.”

Smolyak sparse grids (anisotropic form). Let  be a nested sequence of 1D
rules (e.g., Clenshaw–Curtis), and define hierarchical surpluses

The Smolyak operator of level  in  dimensions is

or, in an anisotropic setting with importance weights ,

For nested rules with , the total nodes satisfy ,
dramatically smaller than . For functions with bounded mixed derivatives (mixed
Sobolev smoothness), the error decays near the 1D rate up to polylog factors in .

Why sparse grids matter: A full grid in 10D is like trying to photograph every grain of sand on a beach. Smolyak takes

smart snapshots along carefully chosen “slices” so you still see the big picture without counting every grain.

Visual intuition: dense vs. sparse grids (2D)

d Ω = [−1, 1]

d

I

d

= ∫
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Full tensor grid (9×9 = 81 points) Smolyak sparse grid (level 3, 29 points)

x

y

x

y

Full tensor nodes Smolyak nodes

Dense tensor grids explode as . Smolyak sparse grids keep the 1D accuracy trend with far fewer points for smooth,

mixed‑regularity integrands.

Example integrands

Smooth mixed-derivative case:

with . Ideal for sparse grids (high mixed smoothness).
Basket call (via Gaussian map):

where . Use Gauss–Hermite in D or Cholesky to map  and
then apply sparse grids on .

Pseudocode: full tensor product quadrature

# Full tensor quadrature (d dimensions)

input:

- f: function R^d -> R

- rules[1./d]: 1D quadrature rules, each with nodes x_j[1./n_j], weights

w_j[1./n_j]

function tensor_integrate(f, rules):

idx = [1]*d

total = 0.0

while True:

# build point and weight

x = [ rules[j].x[ idx[j] ] for j in 1./d ]

w = 1.0

for j in 1./d:

n

d

f(x) = exp(−

d

∑

j=1

a

j

(x

j

− c

j

)

2

) cos(2π

d

∑
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b

j

x

j

), x ∈ [−1, 1]

d

,

a

j

> 0

V = e

−rT

E[(

d

∑
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w

j

S

0j

e

μ

j

+σ

j

Z
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−K)

+

],

Z ∼ N (0, Σ) d Z = Ly, y ∼ N (0, I)

y
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w *= rules[j].w[ idx[j] ]

total += w * f(x)

# advance mixed-radix counter

k = d

while k >/ 1:

if idx[k] < rules[k].n:

idx[k] += 1

for m in k+1./d:

idx[m] = 1

break

else:

k -= 1

if k =/ 0:

return total

Trade-off: Full tensor is simple and optimal for small  (e.g., ) with cheap integrands. Cost grows as .

Pseudocode: Smolyak sparse grid (nested 1D rules)

# Smolyak sparse grid of level q with nested 1D rules

input:

- f: function R^d -> R

- U_level(j, ell): returns 1D level-ell rule for dimension j:

  nodes x^{(j)}_{ell}[1./n_ell], weights w^{(j)}_{ell}[1./n_ell]

with nesting: nodes at ell-1 are contained in ell

- q: sparse grid level

- d: dimension

function smolyak_integrate(f, U_level, q, d):

total = 0.0

# iterate over all multi-indices ell = (ell_1,.//,ell_d)

for ell in all_multi_indices(d):

if sum(ell) </ q + d - 1:

# build tensor product of surpluses Δ_{ell_j}

nodes_list = []

weights_list = []

for j in 1./d:

# current and previous level rules

nodes_curr, weights_curr = U_level(j, ell[j])

if ell[j] > 1:

nodes_prev, weights_prev = U_level(j,

ell[j]-1)

else:

d d ≤ 3 O(n

d

)
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nodes_prev, weights_prev = [], []

# surplus = current rule minus previous rule

(matching nodes)

Δ_nodes, Δ_weights = hierarchical_surplus(nodes_curr,

weights_curr,

nodes_prev, weights_prev)

nodes_list.append(Δ_nodes)

weights_list.append(Δ_weights)

# tensor product loop over surplus nodes

for (pt, wt) in tensor_product(nodes_list, weights_list):

total += wt * f(pt)

return total

Multidimensional quadrature is like trying to measure the volume of a complex shape. A full grid approach would
measure every single point, which is inefficient. Sparse grids are like taking strategic measurements at key locations

to estimate the volume without all the work.

In any multidimensional pricing or risk problem, the first step is to clearly
identify the integrand — the function you are integrating over the joint
distribution of your risk factors. Quants should always build a straightforward
Monte Carlo version first: it serves as a “truth” benchmark or at least a ballpark
sanity check before attempting more exotic quadrature or sparse grid methods. Once
the integrand is understood, make every effort to reduce the effective dimension
algebraically. Standard calculus tools apply:

Fubini’s theorem: If  is integrable on , then

This enables iterative integration — integrate out one variable at a time when
the inner integral is tractable. Finance example 1 (Max of two):

f(x, y) A×B

∬

A×B

f(x, y) dx dy = ∫

A

[∫

B

f(x, y) dy]dx = ∫

B

[∫

A

f(x, y) dx]dy.

C = e

−rT

∬

R

2
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1

, s

2

) −K)

+
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(s
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2
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Finance example 2 (Independent factors): For separable ,

Peel one layer at a time: fix one variable, finish the easy inside piece,
then move on.

# Fubini iterative integration (max-call under independence)

def price_max_call(f1, f2, K, r, T):

def inner(s1):

t1 = integrate(lambda s2: max(s1 - K, 0.0) * f2(s2), 0.0, s1)

t2 = integrate(lambda s2: max(s2 - K, 0.0) * f2(s2), s1, inf)

return (t1 + t2) * f1(s1)

return math.exp(-r*T) * integrate(inner, 0.0, inf)

Change of variables: Use  to simplify domain/structure; adjust by the
Jacobian.

Example 1 (Polar): For ,

Example 2 (Finance, decorrelation): For , take Cholesky  s.t. ,
set  with .

Rotate your axes so the problem lines up with them; straight cuts beat
diagonal cuts.
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+ y

2

) dx dy

∫

2π

0

∫

R

0

g(r) r dr dθ = 2π∫

R

0

g(r) r dr.

Z ∼ N (0, Σ) L Σ = LL

⊤

Z = LY Y ∼ N (0, I)
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# Decorrelate correlated normals via Cholesky

def decorrelated_samples(L, n_samples):

for _ in range(n_samples):

y = np.random.normal(size=L.shape[0])

yield L @ y

Change of bounds: Triangles and simplices often become rectangles under a clever
map.

If  depends only on , then  and the integral becomes 1D:

Redraw a slanted fence into a neat rectangle; measuring becomes trivial.

# Change of bounds mapping for triangle x>/0,y>/0,x+y</1

def triangle_to_uv_integral(h_u):

# if h(x,y) = H(x+y) only

return integrate(lambda u: u * h_u(u), 0.0, 1.0)

Pre-solving with integration by parts (IBP): Reduce difficult kernels before
numerics.

(One IBP plus a standard Laplace integral.) Finance: In Laplace/Fourier pricing,
IBP moves derivatives to exponential kernels, simplifying the residual integral.

Do the easy algebraic pruning first; then compute only what’s left.

∬ h(x, y) dx dy ∫

1

0

(∫

u

0

h(u− v, v) dv)du.

x≥0, y≥0

x+y≤1

u=x+y, v=x

−→

h u ∫

u

0

h(u) dv = uh(u)

∫

1

0

uh(u) du.

I = ∫

∞

0

e

−ax

sin(bx) dx =

b

a

2

+ b

2

.
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# SymPy: verify a closed-form piece before numerics

import sympy as sp

x,a,b = sp.symbols('x a b', positive=True)

expr = sp.exp(-a*x)*sp.sin(b*x)

I = sp.integrate(expr, (x, 0, sp.oo))

print(sp.simplify(I))  # b/(a*/2 + b*/2)

Reduction to a low-dimensional statistic: If the payoff depends only on
, transform to  and integrate out orthogonal parts.

Deelstra’s comonotonic upper bound (Arithmetic basket):

Assume perfect lockstep across names — you get a safe overestimate that
collapses to 1D.

# Deelstra's comonotonic bound via quantile integration on [0,1]

def deelstra_upper_bound(F_inv_list, K, r, T, rule):

def integrand(p):

avg = sum(F_inv(p) for F_inv in F_inv_list) / len(F_inv_list)

return max(avg - K, 0.0)

total = 0.0

for w, node in zip(rule.weights, rule.nodes):  # nodes in [0,1]

total += w * integrand(node)

return math.exp(-r*T) * total

Conditioning (Law of iterated expectations): Collapse one variable via a
conditional expectation.

Finance: If  is Gaussian and  is affine in , the inner expectation is
analytic → 1D left.

S = ∑

d

j=1

w

j

X

j

(S, orthogonal)

C = e

−rT

E[(

1

d

d

∑

j=1

S

T ,j

−K)

+

]

⇝ C

upper

= e

−rT

∫

1

0

(

1

d

d

∑

j=1

F

−1

j

(p) −K)

+

dp

E[g(X,Y )] = E[ E[g(X,Y ) ∣ X] ].

Y ∣ X = x g Y
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Ask one question at a time; if the first answer reveals the second, you skip
it.

# Conditioning reduction: E[g(X,Y)] with Y|X Gaussian

def reduced_integrand(x):

mu, sig = mu_sigma_given_x(x)

return analytic_E_over_Y(mu, sig)   # closed form in Y

price = integrate(lambda x: reduced_integrand(x) * fX(x), x_lo, x_hi)

Marginalisation / separability: If factors separate, multiply one-dimensional
pieces.

Finance: Independent term structures, product payoffs.

If chores are independent, split the list and finish each separately.

Convolution structure (sum of factors): If  with independent ,

If the payoff depends only on , use 1D convolution or FFT (via characteristic
functions). Finance: Sum of (approximate) lognormals; price via FFT over .

Add the “shadows” (Fourier) where addition becomes multiplication; then
return.

# 1D convolution via FFT using characteristic functions

def price_via_fft(payoff_hat, phi_Z, u_grid):

# payoff_hat(u): Fourier transform of payoff kernel

# phi_Z(u): characteristic function of Z

G = payoff_hat(u_grid) * phi_Z(u_grid)

# inverse FFT to real space (schematic)

return ifft(G).real

∬ h(x) k(y) dx dy = (∫ h(x) dx)(∫ k(y) dy).

Z = X + Y X,Y

f

Z

(z) = ∫ f

X

(x) f

Y

(z− x) dx,

^

f

Z

(u) =

^

f

X

(u)

^

f

Y

(u).

Z

φ

Z
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Orthogonal transforms (PCA/rotations): Rotate to align one axis with the
dominant direction; integrate orthogonal parts out.

Finance: PCA for correlated Gaussian factors; keep first components, marginalise
the rest.

Turn the problem so the “action” sits on a single axis; the rest fades out.

Symmetry and group actions: If  is invariant under permutations/rotations,
integrate over a fundamental region and multiply.

Finance: Exchangeable assets in a symmetric basket.

Compute one wedge of the pie, then multiply by the number of wedges.

Indicator-function tricks (region reparametrisation): Replace  with a
variable change  so the indicator becomes  with simple bounds.

Swap to difference+baseline; the inequality becomes a plain “greater than
zero.”

Known moments (polynomial integrands): Use moment formulas and avoid
integration.

Finance: Polynomial approximations of payoffs; replace integrals by moments.

If you know all the averages in advance, you can skip counting every case.

Laplace / Fourier transforms (transform pricing): Move to transform space,
integrate there, invert.

Finance: Carr–Madan/COS integrate against characteristic functions; often 1D.

x = Qy, Q

⊤

Q = I, ∫ f(x) dx = ∫ f(Qy) dy.

f

∫

Ω

f(x) dx = |G| ∫

Ω/G

f(x) dx.

1

{X>Y }

U = X − Y , V = Y 1

{U>0}

X ∼ N (0,σ

2

) : E[X

2n

] = (2n− 1)!!σ

2n

, E[X

2n+1

] = 0.

∫ f(x) g(x) dx =

1

2π

∫

^

f(u) ĝ(−u) du, L{f}(s) = ∫

∞

0

e

−sx

f(x) dx.
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Translate a hard sentence into a language where it’s easy — then translate
back.

“p-trivial” variables (drop almost-sure constants): If a variable is a.s.
constant under the measure ( -trivial), it contributes nothing; remove that
dimension.

If something never changes, don’t waste time measuring it.

CAS assist (SymPy/Mathematica) before quadrature: Offload closed-form
sub-integrals, simplifications, or transforms to a CAS, then apply numerics to
the residual part.

# SymPy pipeline: pre-solve inner integral, then numeric outer

import sympy as sp

x,y,a = sp.symbols('x y a', positive=True)

inner = sp.integrate(sp.exp(-a*y) * sp.cos(x*y), (y, 0, sp.oo))  # closed form

in y

# inner = a / (a*/2 + x*/2)

outer = sp.integrate(inner * sp.exp(-x*/2), (x, -sp.oo, sp.oo))  # or hand to

quadgk if hard

print(sp.simplify(inner))

Pseudocode: Deelstra’s comonotonic bound

def deelstra_upper_bound(F_inv_list, K, r, T, quad_rule):

# F_inv_list: list of quantile functions F_j^{-1}(p)

def integrand(p):

  avg = sum(F_inv(p) for F_inv in F_inv_list) / len(F_inv_list)

  return max(avg - K, 0.0)

total = 0.0

for w, node in zip(quad_rule.weights, quad_rule.nodes):

  total += w * integrand(node)

return math.exp(-r*T) * total

Jargon note:
p-trivial: In probability theory, an event is “p-trivial” if it has probability
0 or 1 under the measure . In integration contexts, a “p-trivial” variable is
one that is almost surely constant — integrating over it adds nothing, so you
can drop that dimension entirely.

P

P
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Comonotonic: Random variables that move together perfectly — higher values of
one always correspond to higher values of the others.
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High‑dimensional integral (proxy for d‑D)

f(x1,…,xd)

Domain ⊂ ℝ^d, d ≫ 1 (illustrated as 3D)
Identify structure: separability, symmetry, sufficient statistics

Fubini (iterated integrals) Change of variables Symmetry

Reduced few‑dimensional integral (e.g., 2D)

u₁

u₂

f(u₁,u₂) after decorrelation / reparam.
Integrate one variable analytically if possible; numerically integrate the rest.

Sufficient statistic (e.g., sum) Comonotonic bound (Deelstra)

1D integral in reduced variable

Integrals over a Circle and Arbitrary Shapes

Circle / Disk (polar coordinates)

Idea (pizza-slice method): A disk is easiest to sweep in radius and angle. Imagine slicing a pizza: for each angle θ,

move outward from the center (radius r) and add up the contributions of the function. The little area of a thin “ring
slice” is not just dr dθ—it’s bigger the farther you are from the center. That stretch factor is the radius r (because a

small angular step makes a bigger arc at larger radius). That’s why the Jacobian is r.

Angle tells you where you are around the circle.

Radius tells you how far from the center you are.

Jacobian = r scales the tiny area correctly.

Fun fact: For smooth periodic functions, the simple uniform trapezoid rule in angle often converges spectacularly
fast because it “wraps around” perfectly.

Let the disk be . Use the polar map

The Jacobian matrix is

and . Thus, for integrable ,

D

R

= {(x, y) ∈ R

2

: x

2

+ y

2

≤ R

2

}

x = r cos θ, y = r sin θ, r ∈ [0,R],  θ ∈ [0, 2π).

J(r, θ) = [ ] = [ ],

∂x/∂r ∂x/∂θ

∂y/∂r ∂y/∂θ

cos θ −r sin θ

sin θ r cos θ

|det J| = r f

∬

D

R

f(x, y) dx dy = ∫

2π

0

∫

R

0

f(r cos θ, r sin θ) r dr dθ.
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Change-of-variables & quadrature:

Map Gauss–Legendre nodes  on  to :

Use uniform angles , , with weights  (trapezoid on a periodic

function). Then

Notes: You can alternatively use radial rules designed for a weight  (e.g., Gauss–Jacobi
with  after an affine map) so the factor  is “baked into” the weights.

# Goal: I = ∬_{x^2+y^2 ≤ R^2} f(x,y) dx dy

# Use polar change of variables with Jacobian r.

input: function f(x,y), radius R, integers n_r, n_theta

# 1) Angular nodes & weights (periodic trapezoid)

for j in 0./n_theta-1:

theta[j] = 2*pi*j / n_theta

w_theta[j] = 2*pi / n_theta

# 2) Radial nodes & weights: Gauss-Legendre on [0,R]

#    Map from [-1,1] to [0,R]; include Jacobian (R/2)

xi[], w[] = gauss_legendre(n_r)         # on [-1,1]

for k in 1./n_r:

r[k] = 0.5*R*(1 + xi[k])

w_r[k] = 0.5*R*w[k]                  # from mapping

# 3) Double sum (note the extra factor r[k] from Jacobian of polar)

I = 0

for j in 0./n_theta-1:

for k in 1./n_r:

x = r[k] * cos(theta[j])

y = r[k] * sin(theta[j])

I += w_theta[j] * w_r[k] * f(x, y) * r[k]

return I

# Tips:

# - Increase n_theta if f varies rapidly with angle.

# - Increase n_r if f varies rapidly with radius or near r=R.

# - For smooth periodic dependence on theta, trapezoid converges very fast.

{ξ

k

,w

k

}

n

r

k=1

[−1, 1] [0,R]

r

k

=

R

2

(1 + ξ

k

),

~

w

k

=

R

2

w

k

.

θ

j

=

2πj

n

θ

j = 0,… ,n

θ

− 1 w

θj

=

2π

n

θ

I ≈

n

θ

−1

∑

j=0

n

r

∑

k=1

w

θj

~

w

k

f(r

k

cos θ

j

, r

k

sin θ

j

) r

k

.

r

α = 1,β = 0 r
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Arbitrary shape Ω ⊂ ℝ² (triangulate & sum)

Idea (tile with triangles): Any wiggly shape can be covered by tiny, non-overlapping triangles—like a mosaic.
Triangles are great because they’re flat and simple. We compute the integral on each triangle (by mapping it to a

standard “reference” triangle) and then add everything up.

Mesh your shape into triangles.

Flatten each triangle onto a simple reference triangle.

Sample & sum with a small set of well-chosen points (Gaussian quadrature).

Fun fact: The determinant of the affine map’s Jacobian on a triangle is constant and equals 2 × area of the triangle.

Let  be a polygonal (or meshed) domain, partitioned into disjoint triangles:

For each triangle  with vertices , define the affine map from the
reference triangle

by

Its Jacobian matrix  is constant on , and  where  is
the area of triangle . Then

Reference-triangle quadrature rules: Nodes  and weights  are defined on  whose
area is . A few standard choices:

Degree-1 (centroid): One point at  with weight .

Degree-2 (three-point): Points , each with weight  (weights sum
to ).

Per-triangle approximation:

# Goal: I = ∬_Ω f(x,y) dx dy by triangulation and Gaussian quadrature.

input: function f(x,y), triangle list {T_e}, quadrature rule {(xi_q, eta_q, w_q)}

Ω ⊂ R

2

Ω =

E

⋃

e=1

T

e

, T

e

∩ T

e

′ = ∅ (e ≠ e

′

).

T

e

v

1

, v

2

, v

3

T

ref

= {(ξ, η) : ξ ≥ 0,  η ≥ 0,  ξ+ η ≤ 1}

ϕ

e

(ξ, η) = v

1

+ ξ(v

2

− v

1

) + η(v

3

− v

1

).

J

e

= [v

2

− v

1

  v

3

− v

1

] T

e

 |det J

e

| = 2 |T

e

| |T

e

|

T

e

∫

Ω

f(x, y) dx dy =

E

∑

e=1

∫

T

ref

f(ϕ

e

(ξ, η)) | det J

e

| dξ dη.

(ξ

q

, η

q

) w

q

T

ref

1/2

(

1

3

,

1

3

) w =

1

2

(

1

6

,

1

6

), (

2

3

,

1

6

), (

1

6

,

2

3

) w =

1

6

1/2

I

e

≈ | detJ

e

|

N

q

∑

q=1

w

q

f(ϕ

e

(ξ

q

, η

q

)), I ≈

E

∑

e=1

I

e

.
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on T_ref

I = 0

for each triangle T_e with vertices v1=(x1,y1), v2=(x2,y2), v3=(x3,y3):

# 1) Build affine map phi_e and Jacobian J_e

e1 = v2 - v1

e2 = v3 - v1

J = [e1 | e2]                    # 2x2 matrix

detJ = abs(det(J))               # constant on T_e

# 2) Quadrature in reference coordinates

I_e = 0

for each (xi_q, eta_q, w_q):

x_q = v1.x + xi_q*e1.x + eta_q*e2.x

y_q = v1.y + xi_q*e1.y + eta_q*e2.y

I_e += w_q * f(x_q, y_q)

# 3) Scale by |detJ|

I += detJ * I_e

return I

# Tips:

# - Use a finer mesh or higher-degree quadrature if f changes rapidly.

# - For curved boundaries, either refine triangles near the boundary or use curved

elements.

# - The determinant satisfies detJ = 2 * area(T_e).

Boundary integral (Green/Gauss)

Idea (walk the fence, skip the lawn): Instead of summing over the whole area, sometimes you can walk only along

the boundary and get the same answer. This is perfect when what you care about is a “flux” through the boundary

or the domain is easier to describe by its edges/curve.

Turn a 2D area integral into a 1D boundary integral (when applicable).

Great for polygons, splines, or piecewise smooth curves.

Integrate along edges with standard 1D quadrature.

Fun fact: The area of any simple polygon can be computed just by walking its boundary (the “shoelace formula”).

Green’s theorem (two equivalent forms, CCW orientation):

Circulation form:

Divergence / Gauss form in 2D:

∬

Ω

(

∂Q

∂x

−

∂P

∂y

) dA = ∮

∂Ω

P dx+Qdy.

∬

Ω

∇⋅F dA = ∮

∂Ω

F ⋅ n ds.
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To convert a given area integrand :

Choose  so that , then integrate  along ; or

Choose  so that , then integrate  along .

Examples:

Parametric boundary & 1D quadrature: Let a boundary segment be parameterized by
, . Then

For a straight segment from  to , use , , so
, . Apply Gauss–Legendre in 1D:

hence on the segment

Summing over all segments gives .

Polygon area (shoelace) as a special case: For vertices , , with
,

# Goal: Convert ∬_Ω f dA to a boundary integral via Green, then do 1D quadrature.

input: polygon/spline boundary segments {gamma_e(t) on [0,1]}, choice of (P,Q) with

dQ/dx - dP/dy = f,

1D Gauss-Legendre nodes {t_j, w_j}

I = 0

for each boundary segment gamma_e(t) = (x_e(t), y_e(t)), t in [0,1], oriented CCW:

dxdt(t) = derivative of x_e at t

dydt(t) = derivative of y_e at t

f

P ,Q ∂Q/∂x− ∂P/∂y = f P dx+Qdy ∂Ω

F ∇⋅F = f F ⋅ n ∂Ω

Area(Ω) =∬

Ω

1 dA = ∮

∂Ω

1

2

(x dy− y dx) =∬

Ω

∇⋅(x, 0) dA = ∮

∂Ω

(x, 0) ⋅ n ds.

∬

Ω

x dA = ∮

∂Ω

1

2

x

2

dy (take P = 0,  Q =

1

2

x

2

).

γ(t) = (x(t), y(t)) t ∈ [a, b]

∫

γ

P dx+Qdy = ∫

b

a

(P(γ(t))x

′

(t) +Q(γ(t)) y

′

(t)) dt.

a = (x

0

, y

0

) b = (x

1

, y

1

) γ(t) = a+ t(b− a) t ∈ [0, 1]

x

′

(t) = x

1

− x

0

y

′

(t) = y

1

− y

0

∫

1

0

g(t) dt ≈

n

∑

j=1

w

j

g(t

j

),

∫

seg

P dx+Qdy ≈

n

∑

j=1

w

j

[P(γ(t

j

)) (x

1

− x

0

) +Q(γ(t

j

)) (y

1

− y

0

)].

∮

∂Ω

(x

i

, y

i

) i = 1,… ,N

(x

N+1

, y

N+1

) = (x

1

, y

1

)

Area =

1

2

N

∑

i=1

(x

i

y

i+1

− x

i+1

y

i

).
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I_e = 0

for j in 1./n:

tj = t_j

xj = x_e(tj); yj = y_e(tj)

I_e += w_j * ( P(xj,yj)*dxdt(tj) + Q(xj,yj)*dydt(tj) )

I += I_e

return I

# Notes:

# - Ensure boundary orientation is counterclockwise for the sign to match Green's

theorem.

# - For piecewise-linear edges, dx/dt and dy/dt are constants per edge.

# - If using the divergence form, parameterize n and use F·n instead.

Quadrature is a universal tool for solving real-world problems across everything about math & science. Let's take a

world tour of integration in action.

Physics: The Path Integral

In quantum mechanics, the probability amplitude for a particle to move from point
A to point B is given by the path integral, which sums over all possible paths:

where  is the classical action for each path. This infinite-dimensional
integral is notoriously difficult to compute, but in practice, physicists
discretize time and use numerical quadrature on a high-dimensional space (via
lattice methods). For simple potentials, Gaussian quadrature on each time slice
can be efficient.

Think of it like this: Imagine every possible wiggly path a photon could take from your flashlight to the wall. The
path integral adds up the "quantumness" of each wild route. Quadrature helps us approximate this sum of all

realities.

Chemistry: The Electronic Structure Problem

The energy of a molecule is determined by solving the Schrödinger equation for
electrons. This involves integrating the electron repulsion terms over molecular
orbitals:

Quadrature in the Wild: From Physics to Finance.

K(B,A) = ∫ Dx(t)e

i

ℏ

S[x(t)]

S[x(t)]
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These 6-dimensional integrals (for each pair of electrons) are computed using
Gaussian quadrature with atomic-specific grids. The choice of grid points and
weights is critical for accuracy in codes like Gaussian or PySCF.

Think of it like this: Calculating how electrons—those moody particles—avoid each other in a molecule is like

predicting the drama at a dance party. Quadrature is the social algorithm that figures out who stands where to
minimize awkward collisions.

Biology: Pharmacokinetics

In drug modeling, the concentration of a drug in the body over time is described
by integral equations. For example, the area under the curve (AUC) is a key
metric:

where  is the drug concentration. This integral is often computed using
adaptive quadrature (like Gauss-Kronrod) from experimental data points, especially
since  is exponential and decays rapidly.

Think of it like this: How much medicine is in your system over time? Quadrature measures the total "dose hours"

by adding up the concentration minute by minute, like counting the total rainfall from a storm.

In drug modeling, the concentration of a drug in the body over time is described
by integral equations. For example, the area under the curve (AUC) is a key
metric:

where  is the drug concentration. This integral is often computed using
adaptive quadrature (like Gauss-Kronrod) from experimental data points, especially
since  is exponential and decays rapidly.

Think of it like this: How much medicine is in your system over time? Quadrature measures the total "dose hours"
by adding up the concentration minute by minute, like counting the total rainfall from a storm.

Maps & Geography: Geospatial Quadrature

To integrate fields on Earth (e.g., rainfall, irradiance) over a region, use the
sphere or ellipsoid surface element
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or solid angle . Great circle domains, spherical polygons, or equal-area
pixelizations (e.g., HEALPix) all boil down to “sum values × areas.”

# Average over region Γ on sphere (radius R):

# Approaches: # (1) Equal-area grids (e.g., HEALPix) → sum F_i w_i # (2) Lebedev
nodes → high-order angular quadrature on S^2 # (3) Polygonal region: clip nodes to
Γ or triangulate the spherical polygon Given sample nodes  with weights :

(if weights integrate to 1 over the sphere)

Why the ? Imagine Earth wearing “latitude belts.” Belts near the equator are longer than those near the poles;

 scales each belt’s width to get the right area.

Polygon areas on ellipsoid: Use spherical-excess or ellipsoidal algorithms; for raster data, sum cell means × cell areas.

Quadrature is just “weighted summation.”

DSP: Audio

Energy, filters, and spectral features: integrals of , filter kernels, or windowed transforms. Trapezoid on uniform

samples is surprisingly powerful for periodic/FFT workflows.

# Short-time energy over a frame:

# Filter output integral (continuous):

Fun fact: Your ears handle ~  variation in sound power (≈120 dB). Energy integrals quantify “how loud” a clip
is, not just how high the peaks are.

Graphics: Rendering

Hemisphere sampling (lighting): integrate BRDF × incoming radiance over a hemisphere. Cosine‑weighted quadrature

matches the physics of Lambertian surfaces.

# Outgoing radiance:
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Choose nodes  with weights  (cosine-weighted):

Radiosity / form factors: double integrals over surfaces; discretize patches and apply Gauss rules per patch pair.

Picture it: You’re sampling the dome of light above each pixel. More samples near the normal (cosine‑weighting)

because those rays contribute most.

Graphics: Quadrature for Animation and Quaternions

In computer graphics and animation, quadrature (numerical integration) is essential for computing smooth motion,

blending rotations, and simulating physics. When rotations are represented by quaternions, integration ensures

continuous and stable interpolation over time.

Quaternion Basics: A quaternion  represents a rotation in 3D space
without gimbal lock. Normalized quaternions satisfy:

Quaternion Differential Equation: For angular velocity vector , the
quaternion derivative is:

where

Numerical Integration for Animation: To update orientation over time:

then normalize  to maintain unit length. Higher-order quadrature (e.g., Runge–
Kutta) improves accuracy:

where  are intermediate slopes from the quaternion ODE.

Spherical Linear Interpolation (SLERP): For keyframe animation, interpolate
between  and  on the unit sphere:

This ensures constant angular velocity and smooth motion.

Real-World Applications
Character Animation: Smooth blending of skeletal rotations using quaternion
integration.
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Camera Motion: Interpolating camera orientation for cinematic paths.
Physics Engines: Integrating angular velocity to update rigid body orientation.
VR/AR: Stable head-tracking and orientation prediction using quaternion ODE
integration.

Pseudocode: Quaternion Integration with RK4

// Inputs: q (unit quaternion), omega (angular velocity vector), dt (time step)

function integrate_quaternion(q, omega, dt):

def dqdt(q, omega):

Omega = [[0, -omega.x, -omega.y, -omega.z],

[omega.x, 0, omega.z, -omega.y],

[omega.y, -omega.z, 0, omega.x],

[omega.z, omega.y, -omega.x, 0]]

return 0.5 * Omega * q

k1 = dqdt(q, omega)

k2 = dqdt(q + 0.5*dt*k1, omega)

k3 = dqdt(q + 0.5*dt*k2, omega)

k4 = dqdt(q + dt*k3, omega)

q_new = q + (dt/6)*(k1 + 2*k2 + 2*k3 + k4)

return normalize(q_new)

Video Games: Physics

Quadrature handles impulses, energies, occlusion integrals, and optimal control costs. Smooth gameplay often hides a lot

of integrals under the hood.

# Controller cost:

Analogy: It’s like scoring how “wobbly” and “throttle‑heavy” your car was over a lap. Integrate wobble and throttle

over time to tune a smoother ride.

Real‑Estate: Architecture

Daylight/insolation on façades: integrate the sun path and visibility over time and angles. Shadowing splits the domain →
adaptive rules shine (pun intended).
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# Annual insolation at a point:

Rule of thumb: A tiny change in panel tilt can integrate to big gains over a whole year. Quadrature helps find that
sweet spot.

Shipbuilding: Naval

Hydrostatics and resistance: integrate pressure or sectional areas along the hull. Traditional “curves of areas” are made for

Simpson/Boole’s rules.

# Displacement volume:

Fun fact: Long before GPUs, shipwrights used Simpson’s rule on paper to estimate displacement from station

drawings.

Navigation / Logistics

Fuel/energy along a route: integrate consumption rate over time/distance. If grades or winds change sharply, adaptive

quadrature saves calls.

# Fuel:

Real world: Two routes with the same length can burn very different fuel if one has hills. The integral remembers

every slope.

Remote Sensing: Crude Oil Detection

Oil films change spectral reflectance and polarization. We detect via band‑integrated reflectance and angular models,

then fuse evidence across pixels.

# Band-integrated reflectance in sensor band [λ1, λ2] with spectral response S(λ):

Q = ∫

year

∫

sun-visible

I

sun

(α,β, t) cos(incidence) dΩ dt ≈ ∑

t,Ω

w

t,Ω

I

sun

cos(incidence)

V = ∫

L

0

A(x) dx ≈ Simpson(A(x),x ∈ [0,L])

Fuel = ∫ rate(s(t), grade(t), load) dt ≈ ∑

k

w

k

rate(s

k

, grade

k

, load)

Mind the Gap (Under the Curve)

75/85

Gene Boo -  Mi nd t he Gap ( Under  t he Cur ve)  r ev- 4

A Compendi um on Quadr at ur e Met hods by Gene Boo



# BRDF angular integration (sun-sensor geometry):

# Probabilistic detection (per pixel):

Why the rainbow sheen? Thin films create interference—different wavelengths amplify/cancel at different

thicknesses, changing the integral across the band the satellite sees.

Crystal Science: Diffraction

Structure factors integrate electron density against complex exponentials. Powder diffraction averages orientations over

the sphere—perfect for spherical quadrature.

# Structure factor at scattering vector q:

# Debye scattering (pairwise distances r_{ij}):

# Powder average (orientational integral on S^2):

(Use Lebedev nodes , weights )

Think of it: X‑ray diffraction is the crystal’s “barcode.” The integral sums waves scattered by each atom; peaks appear
where all waves add in sync.

Lasers: Mode Overlap

Coupling efficiency is a normalized overlap of modes. Gaussian/Hermite rules excel for analytic beams; FE rules shine in

complex waveguides.
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Laser handshake: Modes couple best when their “shapes” match. The integral is a compatibility score between the

beams.

Astrophysics

Distances, band fluxes, and lensing—all are integrals. Smooth 1D rules often suffice; angular pieces use spherical

quadrature.

# Luminosity distance (flat ΛCDM; generalize with curvature if needed):

# Band-integrated flux through a filter T(ν):

# (Sketch) Weak lensing potential (2D convolution integral):

Cosmic road trip:  integrates how the expansion stretches space between us and a galaxy. Filters then integrate a

galaxy’s light through the telescope’s “color glasses.”

Finance: Local Volatility and Beyond

In finance, quadrature powers some of the most sophisticated models. Let's dive deeper.

Local Volatility (Dupire's Formula)

Dupire's formula calculates the local volatility surface from market option prices:

The derivatives , , and  are computed from smoothed option price data using
numerical differentiation. Quadrature is used implicitly when integrating the local
volatility PDE to price options.
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Think of it like this: Local volatility is the "mood swings" of the market at every possible stock price and time.

Quadrature helps us deduce these mood swings from the option prices traders are paying.

SABR Model

The SABR model (Stochastic Alpha Beta Rho) describes the dynamics of forward rates
with stochastic volatility:

Option prices under SABR are computed using asymptotic expansions or by numerical
integration of the probability density. For example, the option price can be written
as:

where  is the joint density. This 2D integral is efficiently computed with
Gaussian quadrature or sparse grids.

Think of it like this: SABR is like modeling a car's speed (the forward rate) and the driver's mood (volatility)

simultaneously. Quadrature adds up all the possible outcomes of speed and mood swings to price the option.

Heston Model

The Heston model we've seen earlier has a closed-form characteristic function,
allowing option prices to be computed via Fourier quadrature (Carr-Madan). However,
the integral can be oscillatory, and adaptive quadrature is often used to handle the
oscillations efficiently.

Think of it like this: The Heston model is the market's heartbeat—sometimes steady, sometimes erratic. Quadrature
listens to the heartbeat's frequency components to price options.

Stochastic Local Volatility (SLV)

SLV models combine local volatility and stochastic volatility to capture the best of
both worlds. The option price is given by:

where  is the joint density of stock price and volatility. This 2D integral is
computed using quadrature on a grid, often with adaptive methods in the volatility
dimension.

Think of it like this: SLV is like having a weather model that accounts for both local humidity (local vol) and global
storm systems (stochastic vol). Quadrature is the supercomputer that adds up all the weather scenarios.
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The Fast Fourier Transform (FFT) is not just a fast algorithm; it's a powerful quadrature rule in disguise. Let's uncover the

connection.

Chebyshev Nodes and Clenshaw-Curtis

Recall that Clenshaw-Curtis quadrature uses Chebyshev nodes:

These nodes are the roots of Chebyshev polynomials and are clustered near the
endpoints, which helps capture endpoint behavior. The weights for Clenshaw-Curtis
can be computed via the FFT because the discrete cosine transform (DCT) is
intimately related to the Chebyshev series.

Think of it like this: Chebyshev nodes are like placing more sensors near the edges of a drum—where the skin is

tightest and most sensitive. The FFT is the quick way to calculate the drum's sound from those sensors.

FFT as a Quadrature Rule

The FFT itself can be viewed as a quadrature rule for integrating periodic
functions. Consider integrating a periodic function  over :

If we sample  at  equally spaced points , the trapezoidal rule gives:

But for periodic functions, the trapezoidal rule is exponentially accurate! The FFT
can be used to compute this sum quickly, especially if  is smooth and periodic.

Think of it like this: The FFT is like a revolving door that smoothly integrates people flowing in and out of a building.
For periodic events (like rush hour), it's incredibly efficient.

Convolution: The Integral that FFT Loves

Convolution is a fundamental operation in math and engineering:

FFT: The Quadrature in Disguise0.
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This integral appears everywhere: in signal processing (filtering), probability (sum
of random variables), and finance (option pricing with stochastic processes). The
convolution theorem states that the Fourier transform of a convolution is the
product of the Fourier transforms:

So, to compute convolution, we can FFT both functions, multiply, and then inverse
FFT. This is often faster than direct numerical integration.

Think of it like this: Convolution is like blending two smoothies together. The FFT method is like using a super-
blender that instantly combines their flavors, rather than stirring slowly with a spoon (quadrature).

Quadrature for Convolution

But what if we want to use quadrature directly for convolution? We can discretize
the integral:

This is a quadrature rule! However, for each , we need to evaluate the sum, which
is expensive. The FFT method computes this for all  simultaneously in  time,
whereas direct quadrature would be .

Think of it like this: Direct quadrature for convolution is like hand-mixing every possible combination of ingredients.
The FFT is like using a mixer with many blades—it does all the combinations at once.

Bermudan options can be exercised at specific dates before expiration. Pricing them requires solving a dynamic

programming problem, and quadrature plays a key role.

The Dynamic Programming Equation

The value of a Bermudan option at time  is:

The conditional expectation is an integral:

where  is the transition density. This integral is computed using quadrature at
each time step.
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Think of it like this: Pricing a Bermudan option is like deciding whether to take a gift now or wait for a potentially

better gift later. Quadrature helps us calculate the value of waiting by adding up all future possibilities.

Quadrature Methods

We can use Gaussian quadrature with points tailored to the transition density. For
example, if the density is log-normal, Gauss-Laguerre quadrature is efficient. The
process:
1. Discretize the asset price space into quadrature points  at each exercise

date.

2. At the final date, set .
3. Move backwards in time: for each date, compute the continuation value at each 

using quadrature:

4. Set .

This is called the quadrature method for Bermudan options.

Think of it like this: It's like solving a maze backwards—starting from the end and working back to the beginning,

using quadrature to shine a light on the best path at each step.

FFT Acceleration

If the transition density has a closed-form characteristic function, the expectation
can be written as a convolution. Then, FFT can be used to compute the continuation
value for all asset prices simultaneously. This is faster than quadrature for large
grids.

Think of it like this: FFT for Bermudan options is like using a megaphone to broadcast the value of waiting to all asset
prices at once, rather than whispering to each one individually.

Let's conjure a practical example from finance: pricing a basket option on multiple assets under a multivariate Black-

Scholes model. We'll start with a high-dimensional integral and reduce it step by step.

The Problem
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The Grand Reduction: Taming a High-Dimensional Integral.
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Consider a basket of  assets with prices  following correlated geometric
Brownian motion. The basket call option payoff at time  is:

The risk-neutral price is:

where  is the multivariate normal density with correlation matrix . This is a
-dimensional integral.

Step 1: Change of Variables - Cholesky Decomposition

We decompose , where  is lower triangular. Then, we set , where
. The integral becomes:

Now the integrand is a product of independent normal densities.

Think of it like this: We're untangling the correlated assets into independent factors, like separating intertwined

threads.

Step 2: Dimension Reduction via Conditioning

If the basket is large, we can use a conditioning variable. Let . We
can write:

But  is still hard to compute. Alternatively, we can use a comonotonic
approximation or principal component analysis (PCA) to reduce the dimension.

Step 3: PCA Reduction

Perform PCA on the correlation matrix . The first few principal components explain
most of the variance. Let  be the matrix of eigenvectors. Then, , where  are
the principal components. We can truncate the sum after  components:

The integral becomes -dimensional. For example, if , we have:

d S

1

,S

2

,… ,S

d

T

payoff = max(

d

∑

i=1

w

i

S

i

(T ) −K, 0)

C = e

−rT

∫

R

d

max(

d

∑

i=1

w

i

S

i

(0)e

(r−

1

2

σ

2

i

)T+σ

i

√

Tz

i

−K, 0)ϕ

d

(z; Σ)dz

ϕ

d

(z; Σ) Σ

d

Σ = LL

⊤

L z = Ly

y ∼ N (0, I)

C = e

−rT

∫

R

d

max(

d

∑

i=1

w

i

S

i

(0)e

(r−

1

2

σ

2

i

)T+σ

i

√

T (Ly)

i

−K, 0)ϕ(y

1

)ϕ(y

2

)⋯ϕ(y

d

)dy

X =∑

d

i=1

w

i

S

i

(T )

C = e

−rT

E[max(X −K, 0)] = e

−rT

∫

∞

0

P(X > k)dk

P(X > k)

Σ

P z = Pu u

m < d

z

i

≈

m

∑

j=1

P

ij

u

j

m m = 2

Mind the Gap (Under the Curve)

82/85

Gene Boo -  Mi nd t he Gap ( Under  t he Cur ve)  r ev- 4

A Compendi um on Quadr at ur e Met hods by Gene Boo



Think of it like this: PCA is like finding the main actors in a play—the few that drive the plot. We focus on them and

ignore the extras.

Step 4: Numerical Integration

Now we have a 2D integral. We can compute it using Gaussian quadrature:

where  and  are Gauss-Hermite nodes, and  are the corresponding weights.

Step 5: Validation with Monte Carlo

To validate, we set up a Monte Carlo simulation:
1. Generate  samples of .

2. Transform to .

3. Compute  for each asset.

4. Compute the basket value .

5. Average the payoff: .

We use variance reduction techniques like antithetic sampling to improve accuracy.

Think of it like this: Monte Carlo is the party where we invite millions of random scenarios to see how they behave.

Quadrature is the careful interview of a few representative scenarios.

Step 6: Compare Results

For a basket with  assets, we might find that PCA with  components captures
95% of the variance. The quadrature method with  points might be faster
and more accurate than Monte Carlo with  paths.

Key Insight: Dimension reduction is like compressing a high-resolution image into a smaller file without losing

important details. Quadrature then works efficiently on the compressed version.

C ≈ e

−rT

∫

R

2

max(

d

∑

i=1

w

i

S

i

(0)e

(r−

1

2

σ

2

i

)T+σ

i

√

T∑

2

j=1

P

ij

u

j

−K, 0)ϕ(u

1

)ϕ(u

2

)du

1

du

2

C ≈ e

−rT

n

1

∑

k=1

n

2

∑

l=1

w

k

w

l

max(

d

∑

i=1

w

i

S

i

(0)e

(r−

1

2

σ

2

i

)T+σ

i

√

T (P

i1

u

k

+P

i2

u

l

)

−K, 0)

u

k

u

l

w

k

,w

l

N y ∼ N (0, I

d

)

z = Ly

S

i

(T ) = S

i

(0)e

(r−

1

2

σ

2

i

)T+σ

i

√

Tz

i

X =∑

i

w

i

S

i

(T )

C ≈ e

−rT 1

N

∑max(X −K, 0)

d = 10 m = 2

20 × 20 = 400

100, 000

Mind the Gap (Under the Curve)

83/85

Gene Boo -  Mi nd t he Gap ( Under  t he Cur ve)  r ev- 4

A Compendi um on Quadr at ur e Met hods by Gene Boo



Quadrature methods aren’t just a set of dusty formulas from a numerical analysis textbook — they’re a

precision‑engineered toolkit for turning hairy integrals into neat, well‑behaved numbers. In financial mathematics, they

let you move seamlessly from the humble trapezoidal rule to the Rolls‑Royce of Gaussian quadrature, choosing the right

ride for the terrain between speed and accuracy.

In option pricing, quadrature can be the Goldilocks method: not as assumption‑bound as closed‑form solutions, not as

variance‑hungry as Monte Carlo. Whether you’re bending the problem into a strike‑aware integral, flipping it into Fourier

space, or re‑casting it as a stop‑loss premium, quadrature has a way of finding the sweet spot — integrating form and

function, if you will.

Practical Implementation Tips:

Test convergence with increasing node counts — don’t just take it on faith.

Choose transforms to expose natural weights — let the integrand show you where it wants to be sampled.

Prefer nested rules for adaptivity — reuse points, save cycles, keep your grid from going off on a tangent.

Vectorize integrand evaluations — because looping over points one‑by‑one is so last century.

For per‑strike precision, use quadrature; for whole surfaces, use FFT — know when to sum it up and when to

transform.

Remember: Quadrature is like hiring a team of elite surveyors who know exactly where to stand to measure the

landscape. Monte Carlo is like sending a million tourists with tape measures and hoping the average works out. Both
have their place, but when you need to “integrate” into the market quickly, quadrature can help you avoid going off

on a random walk. Oh here's a joke - “Why did the quadrature rule break up with Monte Carlo? Because it wanted
something more deterministic in its life!”

So, as you head off to tackle your next pricing problem, keep your wits sharp and your weights positive. Don’t be afraid to

change variables if the view looks better from another coordinate system. And if anyone tells you integration is boring,

just smile and say: “I’ve got bounds on that opinion.” After all, in the grand sum of things, it’s not just about getting the area

under the curve — it’s about making every point count.
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